8,548 research outputs found

    Cellular automata models of traffic flow along a highway containing a junction

    Full text link
    We examine various realistic generalizations of the basic cellular automaton model describing traffic flow along a highway. In particular, we introduce a {\em slow-to-start} rule which simulates a possible delay before a car pulls away from being stationary. Having discussed the case of a bare highway, we then consider the presence of a junction. We study the effects of acceleration, disorderness, and slow-to-start behavior on the queue length at the entrance to the highway. Interestingly, the junction's efficiency is {\it improved} by introducing disorderness along the highway, and by imposing a speed limit.Comment: to appear in J. Phys. A:Math.& General. 15 pages, RevTeX, 3 Postscript figure

    Relating Methanogen Community Structure and Anaerobic Digester Function

    Get PDF
    Much remains unknown about the relationships between microbial community structure and anaerobic digester function. However, knowledge of links between community structure and function, such as specific methanogenic activity (SMA) and COD removal rate, are valuable to improve anaerobic bioprocesses. In this work, quantitative structure–activity relationships (QSARs) were developed using multiple linear regression (MLR) to predict SMA using methanogen community structure descriptors for 49 cultures. Community descriptors were DGGE demeaned standardized band intensities for amplicons of a methanogen functional gene (mcrA). First, predictive accuracy of MLR QSARs was assessed using cross validation with training (n = 30) and test sets (n = 19) for glucose and propionate SMA data. MLR equations correlating band intensities and SMA demonstrated good predictability for glucose (q2 = 0.54) and propionate (q2 = 0.53). Subsequently, data from all 49 cultures were used to develop QSARs to predict SMA values. Higher intensities of two bands were correlated with higher SMA values; high abundance of methanogens associated with these two bands should be encouraged to attain high SMA values. QSARs are helpful tools to identify key microorganisms or to study and improve many bioprocesses. Development of new, more robust QSARs is encouraged for anaerobic digestion or other bioprocesses, including nitrification, nitritation, denitrification, anaerobic ammonium oxidation, and enhanced biological phosphorus removal

    Vocal Classification of Vocalizations of a Pair of Asian Small-Clawed Otters to Determine Stress

    Get PDF
    Asian Small-Clawed Otters (Aonyx cinerea) are a small, protected but threatened species living in freshwater. They are gregarious and live in monogamous pairs for their lifetimes, communicating via scent and acoustic vocalizations. This study utilized a hidden Markov model (HMM) to classify stress versus non-stress calls from a sibling pair under professional care. Vocalizations were expertly annotated by keepers into seven contextual categories. Four of these—aggression, separation anxiety, pain, and prefeeding—were identified as stressful contexts, and three of them—feeding, training, and play—were identified as non-stressful contexts. The vocalizations were segmented, manually categorized into broad vocal type call types, and analyzed to determine signal to noise ratios. From this information, vocalizations from the most common contextual categories were used to implement HMM-based automatic classification experiments, which included individual identification, stress vs non-stress, and individual context classification. Results indicate that both individual identity and stress vs non-stress were distinguishable, with accuracies above 90%, but that individual contexts within the stress category were not easily separable

    Nuclear morphologies: their diversity and functional relevance.

    Get PDF
    Studies of chromosome and genome biology often focus on condensed chromatin in the form of chromosomes and neglect the non-dividing cells. Even when interphase nuclei are considered, they are often then treated as interchangeable round objects. However, different cell types can have very different nuclear shapes, and these shapes have impacts on cellular function; indeed, many pathologies are linked with alterations to nuclear shape. In this review, we describe some of the nuclear morphologies beyond the spherical and ovoid. Many of the leukocytes of the immune system have lobed nuclei, which aid their flexibility and migration; smooth muscle cells have a spindle shaped nucleus, which must deform during muscle contractions; spermatozoa have highly condensed nuclei which adopt varied shapes, potentially associated with swimming efficiency. Nuclei are not passive passengers within the cell. There are clear effects of nuclear shape on the transcriptional activity of the cell. Recent work has shown that regulation of gene expression can be influenced by nuclear morphology, and that cells can drastically remodel their chromatin during differentiation. The link between the nucleoskeleton and the cytoskeleton at the nuclear envelope provides a mechanism for transmission of mechanical forces into the nucleus, directly affecting chromatin compaction and organisation.Leverhulme Trust (Grant ID: RPG337), Biotechnology and Biological Sciences Research Council (Grant IDs: BB/N000129/1, BB/L502443/1)This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00412-016-0614-

    Optimal combinations of imperfect objects

    Full text link
    We address the question of how to make best use of imperfect objects, such as defective analog and digital components. We show that perfect, or near-perfect, devices can be constructed by taking combinations of such defects. Any remaining objects can be recycled efficiently. In addition to its practical applications, our `defect combination problem' provides a novel generalization of classical optimization problems.Comment: 4 pages, 3 figures, minor change

    How Virtual Reality Impacts the Landscape Architecture Design Process during the Phases of Analysis and Concept Development at the Master Planning Scale

    Get PDF
    Virtual reality (VR) can offer many benefits for designers. In the field of landscape architecture, the technology is primarily being used as a tool for design review in the late stages of the design process, yet many of the benefits that make VR valuable in the later stages of the design process suggest that VR may be equally valuable when used in earlier stages such as analysis and concept development. This research examined incorporating VR into the design phases of analysis and concept development, and integrated its use with traditional landscape architecture methods to measure its impacts on a large scale master planning project. This research explores the advantages and limitations of VR and suggests a positive outlook for VR as a design tool
    • …
    corecore