
MANAGEMENT OF SECURITY POLICIES IN VIRTUAL
ORGANISATIONS

Benjamin Aziz, Alvaro Arenas, Ian Johnson
e-Science Centre, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, U.K.

benjamin.aziz@stfc.ac.uk,alvaro.arenas@stfc.ac.uk,ian.johnson@stfc.ac.uk

Matej Artač, Aleš Černivec
XLAB d.o.o., Pot za Brdom 100, SI-1000 Slovenia

matej.artac@xlab.si,ales.cernivec@xlab.si

Philip Robinson
SAP, Belfast, Northern Ireland

philip.robinson@sap.com
Keywords: Grid Computing, Security Management, Security Policies, Virtual Organisations

Abstract: Grid-based virtual organisations facilitate the sharing of computational resources among users belonging to
different organisations and working towards a computationally-intensive goal within some project. The se-
lection, access, usage and release of such resources is usually controlled through the enforcement of security
policies that express what is acceptable behaviour by the resources and their users at each stage. This process
is complex to manage in large-scale Grid-based systems, therefore, a solution tackling the management of VO
policies is desireable. In this paper, we propose one such solution that provides policy management capabil-
ities at each phase of the VO lifecycle. We discuss full aspects of the solution starting from the context and
requirements analysis, use cases, design, implementation and finally, qualitative and quantitative evaluation.

1 INTRODUCTION

Exchange of ideas and cooperation in terms of both
human and computational resources provide benefits
to research and industry projects. There are many ad-
vantages of cooperation between organisations of dif-
ferent types, consisting of universities, research insti-
tutions and industries. Many of these organisations
own computational facilities composed into Grids,
which can be used to their advantage by partners col-
laborating in formal projects. However, the diversity
of systems, the time and effort required to configure
them for access from external users as well as admin-
istrative constraints all can hinder exploitation of such
large-scale computational resources.

To overcome these problems, we work with the
notion of a Virtual Organisation (VO) (Foster et al.,
2001). A VO is a dynamic entity composed of users
and computational resources regardless of which in-
stitution or organisation they belong to. A system
implementing VOs therefore provides the means to a
simple and efficient collaboration beyond the bound-
aries of the physical organisations. Such a system is
only complete when it also provides the mechanisms
to assert the policies imposed within the physical or-
ganisations and restrictions agreed on in the projects

utilising the VOs.
In this paper we propose a solution for managing

security policies in VOs. The solution takes into con-
sideration policies that the VO actors, such as its users
and its resources, are subjected to outside the VO it-
self and addionally, it accommodates for additional
policies that arise from the nature of VO itself. The
main novelty in our solution is that it considers se-
curity information at the point of resource selection.
This is achieved by applying standard policy enforce-
ment machinery.

The solution takes into account the phases each
VO goes through within its lifetime. The implemen-
tation follows a set of requirements which make sure
that, first of all, the Grid administration staff in the
physical organisations will be willing to adopt the sys-
tem implementing VOs. Considering the security and
maintainability of the active resources is critical, this
is an important issue to be addressed. Furthermore,
the impact of the policy enforcement should not be
apparent on the actual usability of the VOs. Finally,
the policy system should not enable situations where
a user with less rights would gain more access than
permitted, or to prevent the access to the system alto-
gether, unless specifically required to do so.

For the proposed VO policy management system

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29579771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

we will systematically show its usage in the scenarios
that are common in the lifecycle of the VOs. The poli-
cies have their own lifecycle within that of the VOs,
hence we present the scenarios accordingly. We have
developed our VO policy management system for the
XtreemOS operating system1(Coppola et al., 2008).
Our evaluation of the proposed solution is based on
our experience with this reference implementation.

The rest of the paper is structured as follows. In
Section 2, we give some background discussing the
context and the requirements motivating our work. In
Section 3, we define the phases of the policy man-
agement lifecycle and demonstrate the use cases in-
volved. In Section 4, we introduce our VO policy
management system and discuss its design and im-
plementation. In Section 5, we evaluate our service
in meeting its requirements and highlight its perfor-
mance. Finally, in Section 6, we review related work
and in Section 7, we conclude the paper giving direc-
tions for future work.

2 VIRTUAL ORGANISATION
POLICY MANAGEMENT

The VO policy management problem concerns the as-
surance that policies governing a collection of users,
services and resources from different organisations
are consistently enforced accross the distributed col-
laborative environments. This section describes the
context of this problem, providing a background on
VO lifecycle, security policies, certificates and cre-
dentials, and administrative domains. It also discusses
the requirements for addressing the problem.

2.1 Context

In XtreemOS, VOs are created for the purpose of en-
abling distributed collaborations among different or-
ganisations such that users from one organisation can
access resources owned and administered by other or-
ganistions based on a Grid infrastructure. The VO
scenario is used to describe the activities and infor-
mation that compose the context of VO policy man-
agement and to motivate our requirements.

2.1.1 Virtual Organisation Lifecycle

The VO lifecycle in XtreemOS consists of four main
phases. The Grid Set-Up and Management phase in-
volves the setting up of the infrastructure underlying
the Grid and populating the Grid with resources and

1www.xtreemos.org

prospective users of those resources. Despite the fact
that this phase is the entry point to the lifecycle, it
is visited again whenever new resources or users are
added to the Grid and existing ones removed. The VO
Creation and Management phase is concerned with
creating VOs on top of the Grid infrastructure and
populating those VOs with resources and users. Once
a VO has been created and populated, it then becomes
operational, which means that the lifecycle moves to
the VO Operation phase. Users can then order, access
and use resources. From the operational phase, it is al-
ways possible to perform VO management operations
such as replacing VO users and resources. Finally,
once the VO has reached its goal and its purpose has
expired, it then enters the VO Termination phase, in
which the VO state is dissolved.

2.1.2 Security Policies in VOs

We define a security policy, p ∈ P , as a set of tuples
p = (u,r,a,q), where u ∈ U is a user, r ∈ R is a re-
source, a ∈ A is the permission to execute an action
on a resource and q ∈ Q is a set of logical conditions.
The policy hence states that u is permitted to apply
action a to the resource r under the conditions q such
that q must be true. When any of the users, resources,
actions or set of conditions are unknown, we use the
variables x,y,z to represent their values. In our VOs,
we distinguish four categories of policies.

• User Policies: User policies are policies that are
specified by the VO users in order to determine the
suitability of VO resources to run their jobs. The
purpose of these policies is to protect user data
and jobs. We refer to a user policy as pu ∈ P .
An example of such policy is “Run all my jobs on
resources not shared with competitive users”.

• Resource Policies: These are security policies set
by the local resource administrators to control ac-
cess and usage to their resources by VO users. We
refer to these policies as pr ∈ P . An example of
a resource policy would be that “this resource is
available to the VO users only between the hours
5pm and 7am”.

• VO Policies: VO policies are specified by the VO
owners or managers to determine what is accept-
able behaviour in a VO by its resources and users.
VO policies are different from user or resource
policies in that they provide general rules at the
level of the whole VO rather than a specific user
or resource belonging to a specific administrative
domain. We shall refer to VO policies as pvo ∈ P .
An example of VO policies is that “VO users can
only submit a maximum of three jobs per day to
the VO resources”.

• Filtering Policies: Filtering policies are created
from matching user and VO policies. These poli-
cies are then evaluated at selection time to ensure
that the resources selected are suitable. Filtering
policies are refered to in what follows as p f l ∈ P .
An example of a filtering policy would be to inter-
sect the above user and VO policies to obtain the
following policy “A user can submit a maximum
of three jobs a day and all those jobs must be run
on resources not shared with competitive users”.

2.1.3 Policy Evaluation Strategies

We assume that there are four points in time at which
security policies can be evaluated and enforced, rela-
tive to the timeline of computational jobs.

• Selection-time: Evaluating policies at this stage
occurs at the time when VO resources are being
selected by selection services, such as a schedul-
ing service, for job executions. Hence, policies
will guide the matching of resources to jobs.

• Access-time: Evaluation of policies at this stage
represents classical access control, like for ex-
ample the lattice-based and the role-based access
control models (Sandhu et al., 1996).

• Usage-time: This stage is used to refer to the run-
time control of the usage of resources by the se-
curity policies. A recent dominant example of
usage-time policy evaluation is the usage control
model proposed in (Park and Sandhu, 2004).

• Release-time: This stage refers to the evaluation
of policies applying once resources have been re-
leased by the user and they include all the future
obligations on the user (Bettini et al., 2002), such
as the cleaning-up of the state of the resource or
paying for its usage.

The main focus of the solution we discuss later is on
the first two points: selection-time and access-time.

2.1.4 VO Certificates and Credentials

Certificates are tokens of trust that convey credentials
about the identity and attributes of the certified en-
tity. In our case, we define certificates as a set, c ∈C,
where {|c|}K denotes that the certificate is signed by
the key, K. Certificates carry certain information, as
in the case of X-509 certificates, such as the issuer,
subject, validity and attributes. We shall refer to these
whenever necessary using the in-notation, for exam-
ple, {|issuer = CA,subject = Bob|}KCA , refers to a
certificate whose subject is Bob, issuer is CA and it
is signed by the private key of CA. We write private
keys as K and their corresponding public keys as K+.

2.1.5 Administrative Domains

Administrative domains represent divisions of trust
and ownership among users and resource administra-
tors and give some structure to the way resources are
owned and managed by the owner organisations. We
consider three administrative domains, called sites:

• Resource Sites: These are the sites in which re-
sources offered to the Grid reside.

• User Sites: These denote sites to which users of
VOs belong and who will eventually submit jobs
to the resources of those VOs.

• The Core Site: This is a robust and well-protected
site in which the security and VO management
services will be running. From the trust point of
view, the core site represents the root of trust for
both the resource and user sites.

2.2 Requirements

The requirements for VO policy management can
be derived from what Foster, Kesselman and
Tuecke (Foster et al., 2001) define as the “Grid Prob-
lem”: flexible, secure, coordinated resource shar-
ing among dynamic collections of individuals, insti-
tutions, and resources. They state that resource shar-
ing is, necessarily, highly controlled, with resource
providers and consumers defining clearly and care-
fully what is shared, who is allowed to share, and the
conditions under which sharing occurs. Wasson and
Humphrey(Wasson and Humphrey, 2003) further sug-
gest that VO policies should be sufficiently concrete
in order to describe actions that will be taken to main-
tain the desired VO state. They identify three classes
of VO Policy: (i) VO-wide operational policy, (ii) VO
policy on resources and (iii) VO policy on users. Tak-
ing these past foundations for VO policy management
as a basis, along with XtreemOS application-specific
requirements, we condense the requirements into six
main classes:

R1 Administrative Autonomy: organisations, own-
ers and administrators must be able to maintain ul-
timate control over the usage of resources within
their domains. Failure to do so results in political
and legal problems such as information disclosure
between organisations sharing resources.

R2 Effective Conflict Handling: conflicting policies
(e.g. policies with the same subject and resource
but with opposing permissions, i.e. grant ver-
sus deny) must not be present in the VO policy
management service at enforcement time. VO
policy management must have strategies for pre-
enforcement resolution of policy conflicts.

R3 Maintenance Efficiency: VO policy manage-
ment must introduce minimal administrative ef-
fort to resource providers and consumers, beyond
the protection of their resources, data and jobs.
Redundant interactions for dealing with policy or
certificate expiration and update must be avoided.

R4 Least Privileges: any subject must only be able
to access resources in the VO necessary for estab-
lished or registered responsibilities, roles, tasks
and conditions. If the case arises that subjects
can access resources for which the access is not
justified or sanctioned, they may maliciously or
accidentally compromise the resource or make it
unaccessible for legitimate subjects.

R5 Non-intrusiveness: the overhead required to en-
force policies must have negligible impact on
the performance of resource requests. Enforce-
ment of policies requires two types of compute-
intensive actions: (i) cryptographic operations and
(ii) policy evaluation (filtering, data collection, re-
sult determination). These actions must be imple-
mented efficiently so as they do not introduce un-
necessary checks, operations or interactions that
substantially slow the system’s performance.

R6 Expressiveness without Losing Enforceability:
it must be possible to codify rules that govern the
behavior of VO users, resource access and usage
in such a way that they are consistently and auto-
matically enforceable. We advocate that enforce-
ment of policies at the lowest level of the software
stack (the Operating System) is a means of attain-
ing flexibility and expressiveness with strong en-
forceability of policies.

In the evaluation Section 5, the above require-
ments R1-R6 are used to demonstrate the validity of
VOPS for addressing the “Grid Problem”.

3 VO POLICY LIFECYCLE

In this section, we discuss the management of VO
policies in each phase of the VO lifecycle as described
in Section 2.1.1. First, however, we start by giving an
overview of some of the XtreemOS services used in
this lifecycle. The first group of these services are
trust management services and they include:
• A Root Certification Authority (Root CA): This is

a service that creates the main trust anchor in the
Grid and facilitates the certification of the iden-
tity of other core services within that Grid. This
service can be performed offline to avoid compro-
mise of the root private key, or online using the
CDA service described next.

• A Credential Distribution Authority (CDA): This
service is responsible for distributing identity cer-
tificates to users. It is a subordinate of the Root
CA and facilitates the separation by managing
users’ certification only.

• A Resource Certification Authority (RCA): This
service is responsible for distributing identity cer-
tificates to resources. It is a subordinate of the
Root CA and facilitates the separation of concern
by managing resources’ certification only.

The next group includes the service responsible for
managing policies in VOs.
• A VO Policy Service (VOPS): This is the main ser-

vice here, which is used to manage security poli-
cies in VOs as well as enforce those policies at the
point of resource selection. We shall explain more
in detail the architecture of VOPS in Section 4.

Finally, the last group includes services for manag-
ing job submissions and selecting resources, which
are necessary in order to illustrate the operation of an
active policy management system.
• The Resource Selection Service (RSS): this is a

distributed overlay service (Costa et al., 2009) that
runs on every resource and that computes specific
matching algorithms to decide whether or not the
resource is suitable and available to run a job sub-
mitted by a VO user. Incorporated in this deci-
sion is the decision taken by a local policy deci-
sion point, part of the VOPS service, as to whether
or not the resource satisfies the filter policy asso-
ciated with the submitted job.

• The Application Execution Manager (AEM): This
is a job management service, which accepts job
submissions from users and interacts with the RSS
to determine the appropriate resources matching
the job. The AEM then executes the job on the
selected resources or may prompt the user to make
the final decision.

Next, we describe the policy management lifecycle
phases, which involve all the above services.

3.1 Grid Management

In this phase, site administrators willing to offer their
site resources to the Grid advertise the general site
and resource policies with the VOPS. At this stage,
there are no VOs formed yet, so these policies will be
generic enough at the level of the Grid.

3.1.1 Site Registration

During this phase, site administrators at individual
sites register their sites with the VOPS as shown in

the scenario of Figure 1.

{|pr0, cRCA|}KRCA

Where pr0 = (x,y,z,q)

cRCA = {|issuer = Root CA,

subject = RCA, PK = K
+

RCA|}KRootCA

Root

CA

Core SiteResource Site

Administrator VOPS

RCA

PAP
(2)

(1)

Figure 1: Adding a site domain to the Grid.

We assumed that prior to this step, the site admin-
istrator will have contacted the Grid administrators at
the core site to perform a vetting process, in which the
physical identity of the administrator is authenticated
as well as any attributes related to their site.

After this vetting process, the site administrator
(whom we assume also to be the administrator for
all resources belonging to his site) will first regis-
ter his site, by means of registering the site’s RCA,
with the Root CA trusted at the core site running
the VOPS. This registration process results in the
Root CA returning a certificate cRCA = {|issuer =
Root CA,subject = RCA,PK = K+

RCA|}KRoot CA . The
certificate binds the site’s RCA to its public key K+

RCA.
This certification of the RCA is needed by VOPS to
authentically associate the site with its policies.

The site’s administrator then submits to the VOPS
the default site’s policy with regards to all Grid users,
which includes rules on how to access and use the
site’s resources and the possible actions that can be
performed on them. This policy is written as pr0 =
(x,y,z,q), which only outlines the set of conditions,
q, under which any Grid user attempting to perform
any actions on any of the site’s resources will be ad-
mitted. This policy is general in the sense that it does
not specify any users, resources or actions at this stage
and so it should cater for all future unknown VOs cre-
ated within the Grid. The policy is the safest policy
though other policies can also be specified. The as-
sociation of pr0 with cRCA establishes the trust path
with the Root CA.

3.1.2 Site Population

Once the resource site has been registered with the
core site, it is then possible for the RCA to issue cer-
tificates to the individual resources in the site bind-
ing them with public keys of each resource and to in-
form the VOPS with the specific VO policy for the
resources. This scenario is called site population and
it is shown in Figure 2.

In the first interaction, the RCA issues a certificate
cr1 = {|issuer = RCA,subject = r,PK = K+

r |}KRCA,

RCAResource r Administrator

{|pr1, cRCA|}KRCA

Where pr1 = (x, r, a, q)

cr1 = {|issuer = RCA,

subject = r, PK = Kr
+
|}KRCA

Resource Site

Core Site

VOPS

PAP

(2
)

(1)

Figure 2: Adding a resource to the RCA.

which binds the resource r to its public key K+
r . This

allows r to be authentically identified in any future
interactions assuming it does not leak its private key
to unauthorised users.

In the next step, the site administrator creates a
specific policy, pr1, for the resource and submits it
to the VOPS along with the certificate identifying the
site, cRCA. pr1 = {x,r,a,q}, refers to the set of con-
ditions, q, under which r will allow action a to be
applied to it by any VO user x. This policy is more
specific than pr0 in that it refers to a specific resource
in the site and the specific actions that could be ap-
plied to that resource.

3.1.3 User Registration

In parallel to the registration and population of re-
source sites, users can also be registered in the Grid
as shown in Figure 3.

CDA

Core SiteUser Site

cu1 = {|issuer = CDA,

subject = U, PK = K
+

U|}KCDA

User U

(1)

Figure 3: User Registration in the CDA.

However, from the perspective of VOPS, no user
policies are introduced at this stage to its database.
The reason is because in practice, users may have VO-
specific policies to specify the conditions under which
their jobs are run, however, they would rarely spec-
ify Grid-wide policies. The interaction will allow the
user to obtain a certificate from the CDA, trusted by
VOPS, to associate her with her public key. This cer-
tificate will be used in the next phase of VO creation
and management to allow the user to include her VO
policies in VOPS.

3.2 VO Creation and Management

After the previous phase, the Grid is assumed to have
been set-up and it is ready to be utilised. Therefore,
in this next phase, VOs will be created and populated
with Grid sites, resources and users.

3.2.1 VO Creation

A user, already registered in the Grid, will create a
VO as is shown in Figure 4.

CDA

{|pVO, cu1, cu2|}KUser

Where pVO = (x, VO, y, q)

Core SiteUser Site

VOPS

cu2 = {|issuer = CDA, subject = U,

Attr = (Admin(VO)=U)|}KCDA

User U

PAP

(1)

(2)

Figure 4: Creating a VO and Registering its Policies.

In order to achieve this, the user needs to obtain an
attribute certificate cu2 from the CDA stating that the
user is the administrator of the VO. This certificate
along with cu1 is sent in the next interaction, which
registers the VO policy of the new VO with VOPS.
The two certificates together prove the identity of the
user as well as the fact that the user is the VO admin-
istrator. The VO policy, pVO = (x,VO,y,q), states all
the acceptable conditions q under which the VO must
operate in the future. Example of such conditions in-
clude acceptable VO load-balancing conditions.

3.2.2 Adding Sites to a VO

After registering a site in the Grid, the site adminis-
trator may wish to include their site in some VO. This
operation of adding sites to a VO is shown in the in-
teractions of Figure 5.

{|pr2, cRCA|}KRCA

Where pr2 = (VO, x, y, q)

Core SiteResource Site

Administrator VOPS

RCA

PAP
(1)

Figure 5: Adding a Site to a VO.

The site administrator sends the new site policy,
pr2 = (VO,x,y,q), to VOPS along with the proof of
the identity of the administrator. The policy gives the

acceptable conditions, q, under which any users of the
VO can access any of the resources offered by the site.

3.2.3 Adding Resources to a VO

Once a site administrator has joined their site to a VO,
they can add site resources to the VO under a new
policy, pr3, as shown in Figure 6.

RCAResource r Administrator

{|pr3, cRCA|}KRCA

Where pr3 = (VO, r, a, q)

cr2 = {|issuer = RCA, subject = r,

Attr=member(VO)|}KRCA

Resource Site

Core Site

VOPS

PAP

(1
)

(1)

Figure 6: Adding a resource to a VO.

Prior to that, the local RCA at the resource site
will issue the resource with an attribute certificate to
certify the fact that the resource is now in the VO.
This certificate is necessary for future resource selec-
tion processes. The policy pr3 provides the accept-
able conditions, q, under which r can be accessed us-
ing actions a by users of the VO.

3.2.4 Adding Users to a VO

Similar to the addition of sites and resources to a VO,
users need to join VOs before they can utilise the VO
resources for their jobs, as is shown in Figure 7. In

CDA

{|pu, cu1, cu3|}KU

Where pu = (U, VO, y, q)

VOPS

cu3 = {|issuer = CDA, subject = U,

Attr = (Member(VO)=U)|}KCDA

User U

PAP

(1)

(2)

Figure 7: Joining Users to VOs.

this case, the first interaction allows the user to obtain
an attribute certificate from the CDA to certify that
the user is indeed a member of the VO. This certifi-
cate will allow the user to submit jobs in the future to
VO resources. The user also can specify her policy,

pu = (U,VO,y,q), specifying the conditions q under
which the user’s jobs, may be computed over the VO
resources. This policy is signed by the user and asso-
ciated with the user’s certificate showing her identity
and the fact that it belongs to the VO. The policy pu,
which will be used at the operational phase to cre-
ate the filtering policy, allows VOPS to determine the
suitability of resources to run the user’s jobs. For ex-
ample, the resource may not have the minimum as-
surence level or QoS attributes.

3.3 VO Operation

The main functionality of VOPS during the oper-
ational phase of VOs is to aid the RSS in its re-
source selection process by making sure that only re-
sources whose policies match the filtering policies in
VOPS are selected for job executions. This opera-
tional phase is shown in Figure 8.

User Site

User U

AEM
Core Site

Resource Site

Resource

Job Submission, VO, cu1, cu3

(2
)

Run matching

algorithm on the

job incorporating

Node PDP’s

decision on filter

and resource

policies

S
ub

m
it
jo
b

an
d

fil
te

r p
ol
ic
yReturn list of final resources

(4
)

Resource

PDP

RSS

VOPS

Obtain filter

policy relevant

to the job(5
)

R
et

ur
n

se
le
ct
io
n

de
ci
si
on

(3
)

(1)

(6)

PIP

Figure 8: Resource Selection during VO Operation.

In this phase, the user submits a job to the AEM
along with certificates proving her identity and the
fact that it belongs to the VO. The job submission is
then used to obtain, from VOPS, a copy of the rele-
vant filtering policy (i.e. the policy union of the user
and the VO policies.) Once this is done, the AEM
then submits the job along with the filtering policy
to the RSS, which is running on every resource in
the VO. The RSS evaluates, using internal selection
and matching algorithms, whether the resource can or
cannot offer itself to run the job. This will depend on
static and dynamic properties of the resource.

Part of this decision also is the decision from the
local resource PDP, which will evaluate the request’s
attributes against the local and the filtering policies
and return a security decision as to whether the re-
source is suitable or not to run the job. Once the final
decision has been computed by the RSS, it returns the

decision to the AEM, which in turn returns the list of
all resources that have been selected to the user or al-
ternatively, will schedule the job directly to run on a
subset of those resources.

3.4 VO Termination

The final phase in the policy management lifecycle is
the termination phase, which involves the VO admin-
istrator informing the VOPS of the termination of the
VO that she owns, as shown in Figure 9.

Core SiteUser Site

VOPS

User U

{|Delete(VO), cu1, cu2|}KU

PAP(1)

(2)

Clean-up

Internal State

Figure 9: Termination of VOs.

In the first interaction, the VO owner needs to
prove her identity and provide the attribute certificate
showing that she owns the VO. Once these certificates
are validated by the VOPS, the VOPS then proceeds
to clean-up its internal state by removing policies as-
sociated with the VO.

4 VOPS: A VO POLICY SERVICE

4.1 Architecture

The VO Policy Management Service (VOPS) is struc-
tured logically as shown in Figure 10.

VOPS
Policy Information

Point

Policy Store

Policy Administration

Point

Policy Enforcement

Point

Policy Decision

Point

Figure 10: The structure of VOPS.

• Policy Enforcement Point (PEP): The PEP is
where the users requests are intercepted in order
for these requests to be checked and appropriate
decisions enforced on the requests. The users re-
quests may carry user credentials regarding their
attributes and the attributes of the context.

• Policy Decision Point (PDP): The PDP is the
component which enforces the security policies
on user requests. The PDP contains the logic ap-
plied to policies and users’ requests. There is one
component of the PDP, the Resource PDP, which
runs locally at the resource and assists the RSS
during the selection process.

• Policy Information Point (PIP): The PIP is the
component of VOPS that queries attributes about
the request arriving from a user, additional user
credentials and information about the context of
the request (e.g. time and location).

• Policy Administration Point (PAP): The PAP al-
lows site administrators and users to add, delete
and update site, resource, VO and user policies in
the policy store.

• Policy Store: The Policy Store is a database con-
taining all the relevant policies.

4.2 Implementation

The implementation of VOPS includes a number of
classes, as shown in Figure 11.

Figure 11: Dataflow in VOPS.

• VOPSServer: This is the main class containing
server logic providing VOPS API. The API pro-
vides the enforcement point (where access re-
quests are being processed) as well as methods
for creating and removing policies, adding policy
rules and creating filter policies.

• EXistsDB: As mentioned above, the PAP module
accepts policies from resource administrators and
makes them available to the PDP. The PAP there-
fore holds policies in an internal database imple-
mented with eXist2. eXist is an XML database
which provides easy and fast search engine over
policies stored in XACML format. EXistsDB is
an entity interfacing VOPSServer and providing
access point to administrators and users.

2http://exist.sourceforge.net

• PolicyType: This is a collection of policies from
a domain. It provides access to essential opera-
tions over policies e.g. listing, adding, removing.
EXistsDB encapsules PolicyType as fields.

• PolicyFactoryExtConfig: This is a configuration
class containing settings from a configuration file.

• NodePDP: This is a class used by resource se-
lection services during selection process. Fil-
tered policies are provided to selection service
where enforcement is done in time. Subject, re-
source and action attributes are provided with cor-
responding certificates and job description file.

• VopsPDP: This class provides implementation of
the decision engine. It constructs Policy Deci-
sion Point with different modules provided by the
XACML implementation.

The implementation of the above classes was car-
ried out in Java and uses Bouncy Castle provider3

library for handling certificates. Policy handling
is achieved with Sun’s XACML implementation li-
brary4 extended with modified PDP module. The ser-
vice is hosted within a staging framework and mes-
saging bus developed in XtreemOS. eXist is used as
XML database which provides efficient way for stor-
ing XACML policies and provides XQuery process-
ing for easier information extraction from policies
stored in the database.

5 EVALUATION

The evaluation of the VOPS service is carried un-
der two main criteria: The first is to determine how
well the service meets the requirements set in Section
2.2, and the second is its performance overhead.

5.1 Meeting the Requirements

5.1.1 R1: Autonomy

Any system running on top of the existing Linux ma-
chines with the purpose of providing access to exter-
nal users must first assure that the policies imposed by
the resource administrator, who is the actual owner of
the hardware are enforced first. We have built into
VOPS this requirement by providing a hierarchy of
policies by their type. This means that the resource
policy will take precedence in the evaluation on VO
or user policies.

3http://www.bouncycastle.org
4http://sunxacml.sourceforge.net

5.1.2 R2: Conflict Handling

In our VOPS implementation, we consider the con-
flicting policies in the design time already. Possible
conflicting situations can arise only within a specific
policy (i.e., between the rules that compose a policy)
and not between policies themselves thanks to the hi-
erarchical structure of the database. Since XACML
is used to represent policies, rule combining algo-
rithms are used at a policy level to automatically re-
solve conflicts among policy rules (Shu et al., 2009).
Least privileged policies are user policies (each user
of a specific VO possesses one user policy) and are
considered in parallel with VO policies. VO policies
are provided by VO administrators and have therefore
higher privileges than user policies. Resource policies
are considered at the last stage of resource selection
through filtering policies and these comprise rules of
all three kind of policies conforming with attributes
presented with user, resource and job information.

5.1.3 R3: Maintenance efficiency

The VOPS provides a set of policy database opera-
tions, including policy deletions, insertions and policy
retrieval, each available to user, VO and resource do-
mains. The policies are referenced by their unique ID,
reducing unnecessary traffic for deletions and modifi-
cations. Building up a policy consists of adding rules
that encapsulate the conditions in the smallest amount
of data. Furthermore, entities of the system request
policy filters, which, in turn, contain only the relevant
policies in a single compact form.

5.1.4 R4: Least privileges

High flexibility of the VOPS based on the XACML
specification shows, in fact, that it is possible to pro-
vide either positive or negative policy definitions. In
practice this will mean that the system, upon its boot-
strap, will have a built-in policy denying any action
to any actor. Only by adding new policy rules is it
possible to enable the actions to the specified actors.

5.1.5 R5: Non-intrusiveness

To provide non-intrusiveness in a system, the design
should be such that it reduces the load on a particular
PDP. One way to achieve this is to have a central PIP,
but to distribute the PDP to the entities that are subject
to decision. In the XtreemOS reference implementa-
tion, the PDP is used during the resource discovery,
and the resulting list must comply with the policies.
This is a distributed operation that employs a peer-to-
peer paradigm. We are thus able to utilise the filter-

ing policies evaluated on the nodes themselves. As a
result, handling the policies becomes a part of the op-
erations that take place in any case, contributing to a
negligible overhead.

5.1.6 R6: Expressiveness without losing
Enforceability

Four types of policies are defined within our system:
user, resource, VO and filtering policies. Rules in
each type of policies can conform to any of the rele-
vant user, resource or VO attributes provided through
the use of certificates and job description. Due to this
fact, any scenario concerning user-VO, user-resource
and VO-resource relations can be expressed through
the aforementioned policies within our system.

5.2 Performance Evaluation

Our reference for performance evaluation is a detailed
comparison between different XACML engines de-
scribed in (Turkmen and Crispo, 2008) where the
choice of the Sun’s XACML engine over other alter-
natives is justified. We add our results of timing sub-
missions of generated user requests to VOPS PDP in
the same manner, where the requests contain a vary-
ing number (10, 100, 1000 and 10000) of generic
policies consisting of four rules of which three of
them deny the access to the resource and one of the
rules always permits the access. First policy conform-
ing to the request and denying the action (no permis-
sive rule resides in the policy) stops the whole evalu-
ation by denying the evaluation. In order to time the
evaluation of all policies in the storage, a permissive
rule exists in each policy and, therefore, each policy
conforms to the request.

The results in Figure 12 show that we introduced
some overhead to the response times in our imple-
mentation consisting of the eXist engine for storing
the XACML policies and the XtreemOS service stag-
ing the communication bus.

On the other hand, we gained the ease to man-
age the policies, extract the filter policies from the
database and separate the communication part from
the core of the service. The blue graph presents aver-
age times for XACML engine’s PDP, the green graph
presents times obtained by authors in (Turkmen and
Crispo, 2008), which is shown as a comparison. The
red graph presents average times of first user’s access
request evaluation, i.e., when VOPS is started. In case
of 10000 policies, not taking into account the first ac-
cess to PEP, which is the most expensive, we obtain
average time of 174 ms with standard deviation of 88
ms (50 tests were performed). By that we get close
to the desired blue graph with small addition due to

Number of policies

Ti
m

e
(m

s)

10 100 1000 10000
0

100

200

300

400

500

600

700

800

900

1000 VOPS PEP (Evaluation)
Only Sun XACML Engine (Evaluation)
Client (Evaluation)

Figure 12: Times to evaluate user request with large number
of policies in PDP.

usage of communication framework and network la-
tency of around 40 ms.

Figure 13 depicts how much time is consumed for
saving the policies to database and loading different
amount of policies from database into main memory
preparing the policies for evaluation.

Number of policies

Ti
m

e
(m

s)

10 100 1000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Save
Load

Figure 13: Time for loading large number of policies and
PDP construction (green line) and time for saving policies
from memory to database.

6 RELATED WORK

Standard policy management for Grids is specified
in the OGF Security Architecture for Open Grid Ser-
vices (OGSA) (Nagaratnam et al., 2003), describing
how Grids can use Web services techniques to spec-
ify, publish and enforce security policies. Each node
can use standard authorisation languages such as WS-
Policy and XACML to specify its policies. Our ap-
proach is aligned with the OGSA specification; how-
ever, it differs in that we consider policy information

when selecting resources. Most Grid systems use job-
description languages to express resource attributes
and perform matches between job requests and avail-
able resources at selection time. The primary focus
is on attributes such as computational power and stor-
age capacity, and thus they handle access control only
during job execution. In our work, we argue that ac-
cess control should be considered also in the resource
selection process during the VO operation phase.

There have been other attempts to use security
information at resource-selection time. (Mazzoleni
et al., 2009), integrates policy information with re-
source selection, using XACML as the policy lan-
guage. They compare a VO policy with a local re-
source policy in order to determine compatibility by
applying policy-matching algorithms. Their tech-
nique differs from ours in that we do not use policy
matching, instead we apply the classical machinery
for policy evaluation/enforcement at selection time in
order to determine whether a resource could enforce
a VO policy. Application of numerical trust metric to
integrate trust into resource management is presented
in (Arenas et al., 2008). The limitation of such ap-
proach is that even though the idea of reducing and
simplifying the notion of trust to a number is appeal-
ing, many aspects of trust in the real world are quali-
tative rather than quantitative.

For the evaluation and enforcement of policies at
access time, we have followed the standard approach
to access control (Chakrabarti, 2007), as other sys-
tems like PERMIS (Chadwick et al., 2008). Those
systems differ in the language used to specify autho-
rization (i.e., SAML, XACML, or ad-hoc language),
the authorization model (i.e., pull or push), and func-
tionalities (i.e., support for PDP only or both PDP and
PEP).

7 CONCLUSION

We presented in this paper a VO policy manage-
ment system, which provides capabilities for the man-
agement of security policies in Grid systems along
a lifecycle including phases related to the setting-up
of Grids, creation and management of VOs as well
as their operation and termination. The system fa-
cilitates the selection of resources by evaluating poli-
cies specified by the site and resource administrators,
users and VO owners.

There are several directions for future work. One
problem we see is a lack of additional policy check at
access time on the resource as described in this arti-
cle. To solve this issue, some revocation mechanism
should be incorporated into the system to assist with

the decision just before user’s request is executed on
the resource. We believe there are several possibilities
to tackle this issue, however, more thorough and strin-
gent checks are done on expense of time and commu-
nication complexity. Moreover, a threat analysis is
needed to expose any vulnerabilities that VOPS may
be susceptible to. One type of such vulnerabilities
could arise from the problem of compromised certifi-
cates. Another interesting line of work is to experi-
ment with the application of the VOPS system to the
domain of Cloud computing. This will be based on
the use of XtreemOS as an operating system enabling
virtualisation platforms for Cloud service providers,
as was recently envisioned by Morin et al. in (Morin
et al., 2009). Finally, VOPS could be enhanced to
construct dynamic enforcement mechanisms capable
of enforcing runtime-based usage control policies.

8 ACKNOWLEDGEMENTS

This work was funded by the European FP6
project XtreemOS under the EC contract number IST-
033576. The VOPS implementation was partially fi-
nanced by the European Union under the European
Social Fund.

REFERENCES

Arenas, A. E., Aziz, B., and Silaghi, G. C. (2008).
Reputation Management in Grid-based Virtual
Organisations. In SECRYPT 2008, Interna-
tional Conference on Security and Cryptogra-
phy, pages 538–545.

Bettini, C., Jajodia, S., Wang, X., and Wijesekera, D.
(2002). Obligation Monitoring in Policy Man-
agement. In POLICY ’02: 3rd International
Workshop on Policies for Distributed Systems
and Networks. IEEE Computer Society.

Chadwick, D. W., Zhao, G., Otenko, S., Laborde, R.,
Su, L., and Nguyen, T.-A. (2008). PERMIS: A
Modular Authorization Infrastructure. Concur-
rency and Computation: Practice and Experi-
ence, 20(11):1341–1357.

Chakrabarti, A. (2007). Grid Computing Security.
Springer.

Coppola, M., Jégou, Y., Matthews, B., Morin, C., Pri-
eto, L. P., Sánchez, O. D., Yang, E., and Yu,
H. (2008). Virtual Organization Support within
a Grid-wide Operating System. IEEE Internet
Computing, 12(2):20–28.

Costa, P., Napper, J., Pierre, G., and van Steen, M.
(2009). Autonomous resource selection for de-
centralized utility computing. In 29th Inter-
national Conference on Distributed Computing
Systems (ICDCS).

Foster, I. T., Kesselman, C., and Tuecke, S. (2001).
The Anatomy of the Grid - Enabling Scalable
Virtual Organizations. International Journal
of High Performance Computing Applications,
15(3):200–222.

Mazzoleni, P., Crispo, B., Sivasubramanian, S., and
Bertino, E. (2009). Efficient Integration of Fine-
Grained Access Control and Resource Broker-
ing in Grid. The Journal of Supercomputing,
49(1):108–126.

Morin, C., Jégou, Y., Gallard, J., and Riteau, P.
(2009). Clouds, A New Playground for the
XtreemOS Grid Operating System. Parallel Pro-
cessing Letters (PPL), 19(3):435–449.

Nagaratnam, N., Janson, P., Dayka, J., Nadalin, A.,
Siebenlist, F., Welch, V., Tuecke, S., and Foster,
I. (2003). Security Architecture for Open Grid
Services. OGF Document.

Park, J. and Sandhu, R. (2004). The UCONabc Usage
Control Model. ACM Transactions on Informa-
tion and System Security, 7(1):128–174.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and
Youman, C. E. (1996). Role-based Access Con-
trol Models. Computer, 29(2):38–47.

Shu, C., Yang, E., and Arenas, A. (2009). Detecting
Conflicts in ABAC Policies with Rule-Reduction
and Binary-Search Techniques. In Policy 2009:
IEEE International Symposium on Policies for
Distributed Systems and Networks. IEEE Com-
puter Society.

Turkmen, F. and Crispo, B. (2008). Performance
Evaluation of XACML PDP Implementations. In
SWS 2008: ACM Workshop on Secure Web Ser-
vices, pages 37–44. ACM.

Wasson, G. and Humphrey, M. (2003). Toward ex-
plicit policy management for virtual organiza-
tions. In POLICY ’03: Proceedings of the 4th
IEEE International Workshop on Policies for
Distributed Systems and Networks. IEEE Com-
puter Society.

