20 research outputs found

    Assessment of auditory distance in a territorial songbird: Accurate feat or rule of thumb?

    No full text
    Territorial passerines presumably benefit from their ability to use auditory cues to judge the distance to singing conspecifics, by increasing the efficiency of their territorial defence. Here, we report data on the approach of male territorial chaffinches, Fringilla coelebs, to a loudspeaker broadcasting conspecific song simulating a rival at various distances by different amounts of song degradation. Songs were degraded digitally in a computer-simulated forest emulating distances of 0, 20, 40, 80 and 120 m. The approach distance of chaffinches towards the loudspeaker increased with increasing amounts of degradation indicating a perceptual representation of differences in distance of a sound source. We discuss the interindividual variation of male responses with respect to constraints resulting from random variation of ranging cues provided by the environmental song degradation, the perception accuracy and the decision rules. (C) 2000 The Association for the Study of Animal Behaviour.</p

    Evaluating the Information Content of Shallow Shotgun Metagenomics

    Get PDF
    A common refrain in recent microbiome-related academic meetings is that the field needs to move away from broad taxonomic surveys using 16S sequencing and toward more powerful longitudinal studies using shotgun sequencing. However, performing deep shotgun sequencing in large longitudinal studies remains prohibitively expensive for all but the most well-funded research labs and consortia, which leads many researchers to choose 16S sequencing for large studies, followed by deep shotgun sequencing on a subset of targeted samples. Here, we show that shallow- or moderate-depth shotgun sequencing may be used by researchers to obtain species-level taxonomic and functional data at approximately the same cost as amplicon sequencing. While shallow shotgun sequencing is not intended to replace deep shotgun sequencing for strain-level characterization, we recommend that microbiome scientists consider using shallow shotgun sequencing instead of 16S sequencing for large-scale human microbiome studies.Although microbial communities are associated with human, environmental, plant, and animal health, there exists no cost-effective method for precisely characterizing species and genes in such communities. While deep whole-metagenome shotgun (WMS) sequencing provides high taxonomic and functional resolution, it is often prohibitively expensive for large-scale studies. The prevailing alternative, 16S rRNA gene amplicon (16S) sequencing, often does not resolve taxonomy past the genus level and provides only moderately accurate predictions of the functional profile; thus, there is currently no widely accepted approach to affordable, high-resolution, taxonomic, and functional microbiome analysis. To address this technology gap, we evaluated the information content of shallow shotgun sequencing with as low as 0.5 million sequences per sample as an alternative to 16S sequencing for large human microbiome studies. We describe a library preparation protocol enabling shallow shotgun sequencing at approximately the same per-sample cost as 16S sequencing. We analyzed multiple real and simulated biological data sets, including two novel human stool samples with ultradeep sequencing of 2.5 billion sequences per sample, and found that shallow shotgun sequencing recovers more-accurate species-level taxonomic and functional profiles of the human microbiome than 16S sequencing. We discuss the inherent limitations of shallow shotgun sequencing and note that 16S sequencing remains a valuable and important method for taxonomic profiling of novel environments. Although deep WMS sequencing remains the gold standard for high-resolution microbiome analysis, we recommend that researchers consider shallow shotgun sequencing as a useful alternative to 16S sequencing for large-scale human microbiome research studies where WMS sequencing may be cost-prohibitive

    Electron capture of Xe54+ in collisions with H2 molecules in the energy range between 5.5 and 30.9 MeV/u

    No full text
    The electron-capture process was studied for Xe54+ colliding with H2 molecules at the internal gas target of the Experimental Storage Ring (ESR) at GSI, Darmstadt. Cross-section values for electron capture into excited projectile states were deduced from the observed emission cross section of Lyman radiation, being emitted by the hydrogenlike ions subsequent to the capture of a target electron. The ion beam energy range was varied between 5.5 and 30.9 MeV/u by applying the deceleration mode of the ESR. Thus, electron-capture data were recorded at the intermediate and, in particular, the low-collision-energy regime, well below the beam energy necessary to produce bare xenon ions. The obtained data are found to be in reasonable qualitative agreement with theoretical approaches, while a commonly applied empirical formula significantly overestimates the experimental findings
    corecore