21 research outputs found
Fosciclopirox suppresses growth of high-grade urothelial cancer by targeting the γ-secretase complex
Ciclopirox (CPX) is an FDA-approved topical antifungal agent that has demonstrated preclinical anticancer activity in a number of solid and hematologic malignancies. Its clinical utility as an oral anticancer agent, however, is limited by poor oral bioavailability and gastrointestinal toxicity. Fosciclopirox, the phosphoryloxymethyl ester of CPX (Ciclopirox Prodrug, CPX-POM), selectively delivers the active metabolite, CPX, to the entire urinary tract following parenteral administration. We characterized the activity of CPX-POM and its major metabolites in in vitro and in vivo preclinical models of high-grade urothelial cancer. CPX inhibited cell proliferation, clonogenicity and spheroid formation, and increased cell cycle arrest at S and G0/G1 phases. Mechanistically, CPX suppressed activation of Notch signaling. Molecular modeling and cellular thermal shift assays demonstrated CPX binding to γ-secretase complex proteins Presenilin 1 and Nicastrin, which are essential for Notch activation. To establish in vivo preclinical proof of principle, we tested fosciclopirox in the validated N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) mouse bladder cancer model. Once-daily intraperitoneal administration of CPX-POM for four weeks at doses of 235 mg/kg and 470 mg/kg significantly decreased bladder weight, a surrogate for tumor volume, and resulted in a migration to lower stage tumors in CPX-POM treated animals. This was coupled with a reduction in the proliferation index. Additionally, there was a reduction in Presenilin 1 and Hes-1 expression in the bladder tissues of CPX-POM treated animals. Following the completion of the first-in-human Phase 1 trial (NCT03348514), the pharmacologic activity of fosciclopirox is currently being characterized in a Phase 1 expansion cohort study of muscle-invasive bladder cancer patients scheduled for cystectomy (NCT04608045) as well as a Phase 2 trial of newly diagnosed and recurrent urothelial cancer patients scheduled for transurethral resection of bladder tumors (NCT04525131)
Natural products as a means of overcoming cisplatin chemoresistance in bladder cancer
Cisplatin remains an integral part of the treatment for muscle invasive bladder cancer. A large number of patients do not respond to cisplatin-based chemotherapy and efficacious salvage regimens are limited. Immunotherapy has offered a second line of treatment; however, only approximately 20% of patients respond, and molecular subtyping of tumors indicates there may be significant overlap in those patients that respond to cisplatin and those patients that respond to immunotherapy. As such, restoring sensitivity to cisplatin remains a major hurdle to improving patient care. One potential source of compounds for enhancing cisplatin is naturally derived bioactive products such as phytochemicals, flavonoids and others. These compounds can activate a diverse array of different pathways, many of which can directly promote or inhibit cisplatin sensitivity. The purpose of this review is to understand current drug development in the area of natural products and to assess how these compounds may enhance cisplatin treatment in bladder cancer patients
Lithocholic acid feeding results in direct hepato-toxicity independent of neutrophil function in mice
Lithocholic acid (LCA) supplementation in the diet results in intrahepatic cholestasis and bile infarcts. Previously we showed that an innate immune response is critical for cholestatic liver injury in the bile duct ligated mice. Thus, the purpose of this study was to investigate the role of neutrophils in the mechanism of liver injury caused by feeding mice a diet containing LCA. C57BL/6 mice were given control or 1% LCA containing diet for 24-96. h and then examined for parameters of hepatotoxicity. Plasma ALT levels were significantly increased by 48. h after LCA feeding, which correlated with both neutrophil recruitment to the liver and upregulation of numerous pro-inflammatory genes. The injury was confirmed by histology. Deficiency in intercellular adhesion molecule-1 (ICAM-1) expression or inhibition of neutrophil function failed to protect against the injury. Bile acid levels were quantified in plasma and bile of LCA-fed mice after 48 and 96. h. Only the observed biliary levels of taurochenodeoxycholic acid and potentially tauro-LCA caused direct cytotoxicity in mouse hepatocytes. These data support the conclusion that neutrophil recruitment occurs after the onset of bile acid-induced necrosis in LCA-fed animals, and is not a primary mechanism of cell death when cholestasis occurs through accumulation of hydrophobic bile acids. © 2014 Elsevier Ireland Ltd
Pyruvate Dehydrogenase Kinase 4 Deficiency Increases Tumorigenesis in a Murine Model of Bladder Cancer
Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial isozyme in the PDK family (PDK1-4) partially responsible for phosphorylation of pyruvate dehydrogenase (PDH). Phosphorylation of PDH is thought to result in a pro-proliferative shift in metabolism that sustains growth of cancer cells. Previous data from our lab indicate the pan-PDK inhibitor dichloroacetate (DCA) or acute genetic knockdown of PDK4 blocks proliferation of bladder cancer (BCa) cells. The goal of this study was to determine the role of PDK4 in an in vivo BCa model, with the hypothesis that genetic depletion of PDK4 would impair formation of BCa. PDK4-/- or WT animals were exposed to N-Butyl-N-(4-hydroxybutyl) nitrosamine (BBN) for 16 weeks, and tumors were allowed to develop for up to 7 additional weeks. PDK4-/- mice had significantly larger tumors at later time points. When animals were treated with cisplatin, PDK4-/- animals still had larger tumors than WT mice. PDK4 expression was assessed in human tissue and in mice. WT mice lost expression of PDK4 as tumors became muscle-invasive. Similar results were observed in human samples, wherein tumors had less expression of PDK4 than benign tissue. In summary, PDK4 has a complex, multifunctional role in BCa and may represent an underrecognized tumor suppressor
Induction of mitochondrial biogenesis protects against acetaminophen hepatotoxicity
© 2017 Elsevier Ltd Mitochondrial biogenesis (MB) is an adaptive response to maintain metabolic homeostasis after mitochondrial dysfunction. Induction of MB during APAP hepatotoxicity has not been studied. To investigate this, mice were treated with toxic doses of APAP and euthanized between 0 and 96 h. At early time points, APAP caused both mitochondrial dysfunction and reduction of mitochondrial mass, indicated by reduced activity of electron transport chain (ETC) complexes I and IV and depletion of mitochondrial DNA (mtDNA), respectively. Both ETC activity and mtDNA gradually recovered after 12 h, suggesting that MB occurs at late time points after APAP overdose. Immunofluorescent staining of mitochondria with mitochondrial outer membrane protein Tom20 further demonstrated that MB occurs selectively in hepatocytes surrounding necrotic areas. MB signaling mediators including PPARγ co-activator 1-α (Pgc-1α), nuclear respiratory factor-1 (Nrf-1) and mitochondrial fission protein dynamin-related protein-1 (Drp-1) were induced. Pgc-1α was selectively increased in hepatocytes surrounding necrotic areas. In addition, the time course of MB induction coincides with increased liver regeneration. Post-treatment with the known MB inducer SRT1720 increased Pgc-1α expression and liver regeneration, resulting in protection against late liver injury after APAP overdose. Thus, induction of MB is an important feature during APAP hepatotoxicity and liver regeneration
Lack of Direct Cytotoxicity of Extracellular ATP against Hepatocytes: Role in the Mechanism of Acetaminophen Hepatotoxicity
Acetaminophen (APAP) hepatotoxicity is a major cause of acute liver failure in many countries. Mechanistic studies in mice and humans have implicated formation of a reactive metabolite, mitochondrial dysfunction and oxidant stress as critical events in the pathophysiology of APAP-induced liver cell death. It was recently suggested that ATP released from necrotic cells can directly cause cell death in mouse hepatocytes and in a hepatoma cell line (HepG2). To assess if ATP can directly cause cell toxicity in hepatocytes and evaluate their relevance in the human system. Primary mouse hepatocytes, human HepG2 cells, the metabolically competent human HepaRG cell line and freshly isolated primary human hepatocytes were exposed to 10-100 μM ATP or ATγP in the presence or absence of 5-10 mM APAP for 9-24 h. ATP or ATγP was unable to directly cause cell toxicity in all 4 types of hepatocytes. In addition, ATP did not enhance APAP-induced cell death observed in primary mouse or human hepatocytes, or in HepaRG cells as measured by LDH release and by propidium iodide staining in primary mouse hepatocytes. Furthermore, addition of ATP did not cause mitochondrial dysfunction or enhance APAP-induced mitochondrial dysfunction in primary murine hepatocytes, although ATP did cause cell death in murine RAW macrophages. It is unlikely that ATP released from necrotic cells can significantly affect cell death in human or mouse liver during APAP hepatotoxicity. Understanding the mechanisms of APAP-induced cell injury is critical for identifying novel therapeutic targets to prevent liver injury and acute liver failure in APAP overdose patient
Plasma biomarkers to study mechanisms of liver injury in patients with hypoxic hepatitis
BACKGROUND AND AIMS: Hypoxic hepatitis is a clinical condition precipitated by prolonged periods of oxygen deprivation to the liver. It can have several underlying causes. Despite its prevalence in critically ill patients, which can reach upwards of 10%, very little is known about the mechanisms of injury. Thus, we set out to measure previously identified circulating biomarkers in an attempt to describe mechanisms of injury following hypoxic hepatitis. METHODS: Plasma from patients diagnosed with hypoxic hepatitis was collected for this study. Biomarkers of hepatocellular injury, mitochondrial damage, and cell death were measured. These results were compared against results obtained from well characterized acetaminophen overdose patients. RESULTS: At peak injury, ALT measured 4082±606 U/L and gradually decreased over 5 days, corresponding to the clinically observed pattern of hypoxic hepatitis. Levels of GDH showed a similar pattern, but neither ALT nor GDH were significantly higher in these patients than in acetaminophen patients. Plasma levels of DNA fragments mimicked hepatocellular injury as measured by ALT and miRNA-122. Interestingly, we found a significant increase in caspase-cleaved cytokeratin-18; however, the full-length form greatly exceeded the cleaved form at the time of maximum injury (45837±12085 vs. 2528±1074 U/L). We also found an increase in acHMGB1 at later time points indicating a possible role of inflammation, but cytokine levels at these times were actually decreased relative to early time points. CONCLUSIONS: The mechanism of injury following hypoxic hepatitis involves mitochondrial damage and DNA fragmentation. Importantly, necrosis, rather than apoptosis, is the main mode of cell death