12,048 research outputs found

    Monitoring Frequency of Intra‐Fraction Patient Motion Using the ExacTrac System for LINAC‐based SRS Treatments

    Get PDF
    Purpose: The aim of this study was to investigate the intra‐fractional patient motion using the ExacTrac system in LINAC‐based stereotactic radiosurgery (SRS). Method: A retrospective analysis of 104 SRS patients with kilovoltage image‐guided setup (Brainlab ExacTrac) data was performed. Each patient was imaged pre‐treatment, and at two time points during treatment (1st and 2nd mid‐treatment), and bony anatomy of the skull was used to establish setup error at each time point. The datasets included the translational and rotational setup error, as well as the time period between image acquisitions. After each image acquisition, the patient was repositioned using the calculated shift to correct the setup error. Only translational errors were corrected due to the absence of a 6D treatment table. Setup time and directional shift values were analyzed to determine correlation between shift magnitudes as well as time between acquisitions. Results: The average magnitude translation was 0.64 ± 0.59 mm, 0.79 ± 0.45 mm, and 0.65 ± 0.35 mm for the pre‐treatment, 1st mid‐treatment, and 2nd mid‐treatment imaging time points. The average time from pre‐treatment image acquisition to 1st mid‐treatment image acquisition was 7.98 ± 0.45 min, from 1st to 2nd mid‐treatment image was 4.87 ± 1.96 min. The greatest translation was 3.64 mm, occurring in the pre‐treatment image. No patient had a 1st or 2nd mid‐treatment image with greater than 2 mm magnitude shifts. Conclusion: There was no correlation between patient motion over time, in direction or magnitude, and duration of treatment. The imaging frequency could be reduced to decrease imaging dose and treatment time without significant changes in patient position

    NonClassicality Criteria in Multiport Interferometry

    Get PDF
    Interference lies at the heart of the behavior of classical and quantum light. It is thus crucial to understand the boundaries between which interference patterns can be explained by a classical electromagnetic description of light and which, on the other hand, can only be understood with a proper quantum mechanical approach. While the case of two-mode interference has received a lot of attention, the multimode case has not yet been fully explored. Here we study a general scenario of intensity interferometry: we derive a bound on the average correlations between pairs of output intensities for the classical wavelike model of light, and we show how it can be violated in a quantum framework. As a consequence, this violation acts as a nonclassicality witness, able to detect the presence of sources with sub-Poissonian photon-number statistics. We also develop a criterion that can certify the impossibility of dividing a given interferometer into two independent subblocks.Comment: 5 + 3 pages, published versio

    Non-linear matter power spectrum from Time Renormalisation Group: efficient computation and comparison with one-loop

    Full text link
    We address the issue of computing the non-linear matter power spectrum on mildly non-linear scales with efficient semi-analytic methods. We implemented M. Pietroni's Time Renormalization Group (TRG) method and its Dynamical 1-Loop (D1L) limit in a numerical module for the new Boltzmann code CLASS. Our publicly released module is valid for LCDM models, and optimized in such a way to run in less than a minute for D1L, or in one hour (divided by number of nodes) for TRG. A careful comparison of the D1L, TRG and Standard 1-Loop approaches reveals that results depend crucially on the assumed initial bispectrum at high redshift. When starting from a common assumption, the three methods give roughly the same results, showing that the partial resumation of diagrams beyond one loop in the TRG method improves one-loop results by a negligible amount. A comparison with highly accurate simulations by M. Sato & T. Matsubara shows that all three methods tend to over-predict non-linear corrections by the same amount on small wavelengths. Percent precision is achieved until k~0.2 h/Mpc for z>2, or until k~0.14 h/Mpc at z=1.Comment: 24 pages, 7 figures, revised title and conclusions, version accepted in JCAP, code available at http://class-code.ne

    Wallpaper Fermions and the Nonsymmorphic Dirac Insulator

    Full text link
    Recent developments in the relationship between bulk topology and surface crystal symmetry have led to the discovery of materials whose gapless surface states are protected by crystal symmetries. In fact, there exists only a very limited set of possible surface crystal symmetries, captured by the 17 "wallpaper groups." We show that a consideration of symmetry-allowed band degeneracies in the wallpaper groups can be used to understand previous topological crystalline insulators, as well as to predict new examples. In particular, the two wallpaper groups with multiple glide lines, pggpgg and p4gp4g, allow for a new topological insulating phase, whose surface spectrum consists of only a single, fourfold-degenerate, true Dirac fermion. Like the surface state of a conventional topological insulator, the surface Dirac fermion in this "nonsymmorphic Dirac insulator" provides a theoretical exception to a fermion doubling theorem. Unlike the surface state of a conventional topological insulator, it can be gapped into topologically distinct surface regions while keeping time-reversal symmetry, allowing for networks of topological surface quantum spin Hall domain walls. We report the theoretical discovery of new topological crystalline phases in the A2_2B3_3 family of materials in SG 127, finding that Sr2_2Pb3_3 hosts this new topological surface Dirac fermion. Furthermore, (100)-strained Au2_2Y3_3 and Hg2_2Sr3_3 host related topological surface hourglass fermions. We also report the presence of this new topological hourglass phase in Ba5_5In2_2Sb6_6 in SG 55. For orthorhombic space groups with two glides, we catalog all possible bulk topological phases by a consideration of the allowed non-abelian Wilson loop connectivities, and we develop topological invariants for these systems. Finally, we show how in a particular limit, these crystalline phases reduce to copies of the SSH model.Comment: Final version, 6 pg main text + 29 pg supplement, 6 + 13 figure

    Early Posttreatment Audiometry Underestimates Hearing Recovery after Intratympanic Steroid Treatment of Sudden Sensorineural Hearing Loss

    Get PDF
    Objective. To review our experience with intratympanic steroids (ITSs) for the treatment of idiopathic sudden sensorineural hearing loss (ISSNHL), emphasizing the ideal time to perform follow-up audiograms. Methods. Retrospective case review of patients diagnosed with ISSNHL treated with intratympanic methylprednisolone. Injections were repeated weekly with a total of 3 injections. Improvement was defined as an improved pure-tone average ≄20 dB or speech-discrimination score ≄20%. Results. Forty patients met the inclusion criteria with a recovery rate of 45% (18/40). A significantly increased response rate was found in patients having an audiogram >5 weeks after the first dose of ITS (9/13) over those tested ≀5 weeks after the first dose of ITS (9/27) (P = 0.03). Conclusions. Recovery from ISSNHL after ITS injections occurs more frequently >5 weeks after initiating ITS. This may be due to the natural history of sudden hearing loss or the prolonged effect of steroid in the inner ear

    KELT-18b: Puffy Planet, Hot Host, Probably Perturbed

    Get PDF
    We report the discovery of KELT-18b, a transiting hot Jupiter in a 2.87-day orbit around the bright (V = 10.1), hot, F4V star BD+60 1538 (TYC 3865-1173-1). We present follow-up photometry, spectroscopy, and adaptive optics imaging that allow a detailed characterization of the system. Our preferred model fits yield a host stellar temperature of 6670 ± 120 K and a mass of 1.524^(+0.069)_(-0.068) M⊙, situating it as one of only a handful of known transiting planets with hosts that are as hot, massive, and bright. The planet has a mass of 1.18 ± 0.11 M_J, a radius of 1.570^(+0.042)_(-0.036) R_J, and a density of 0.377 ± 0.040 g cm^(-3), making it one of the most inflated planets known around a hot star. We argue that KELT-18b's high temperature and low surface gravity, which yield an estimated ~600 km atmospheric scale height, combined with its hot, bright host, make it an excellent candidate for observations aimed at atmospheric characterization. We also present evidence for a bound stellar companion at a projected separation of ~1100 au, and speculate that it may have contributed to the strong misalignment we suspect between KELT-18's spin axis and its planet's orbital axis. The inferior conjunction time is 2457542.524998 ± 0.000416 (BJD_(TDB)) and the orbital period is 2.8717510 ± 0.0000029 days. We encourage Rossiter–McLaughlin measurements in the near future to confirm the suspected spin–orbit misalignment of this system
    • 

    corecore