1,359 research outputs found

    Tuning Nanocrystal Surface Depletion by Controlling Dopant Distribution as a Route Toward Enhanced Film Conductivity

    Full text link
    Electron conduction through bare metal oxide nanocrystal (NC) films is hindered by surface depletion regions resulting from the presence of surface states. We control the radial dopant distribution in tin-doped indium oxide (ITO) NCs as a means to manipulate the NC depletion width. We find in films of ITO NCs of equal overall dopant concentration that those with dopant-enriched surfaces show decreased depletion width and increased conductivity. Variable temperature conductivity data shows electron localization length increases and associated depletion width decreases monotonically with increased density of dopants near the NC surface. We calculate band profiles for NCs of differing radial dopant distributions and, in agreement with variable temperature conductivity fits, find NCs with dopant-enriched surfaces have narrower depletion widths and longer localization lengths than those with dopant-enriched cores. Following amelioration of NC surface depletion by atomic layer deposition of alumina, all films of equal overall dopant concentration have similar conductivity. Variable temperature conductivity measurements on alumina-capped films indicate all films behave as granular metals. Herein, we conclude that dopant-enriched surfaces decrease the near-surface depletion region, which directly increases the electron localization length and conductivity of NC films

    Obsessive-compulsive disorder and its related disorders: a reappraisal of obsessive-compulsive spectrum concepts

    Get PDF
    Obsessive-compulsive disorder (OCD) is a clinical syndrome whose hallmarks are excessive, anxiety-evoking thoughts and compulsive behaviors that are generally recognized as unreasonable, but which cause significant distress and impairment. When these are the exclusive symptoms, they constitute uncomplicated OCD. OCD may also occur in the context of other neuropsychiatric disorders, most commonly other anxiety and mood disorders. The question remains as to whether these combinations of disorders should be regarded as independent, cooccurring disorders or as different manifestations of an incompletely understood constellation of OCD spectrum disorders with a common etiology. Additional considerations are given here to two potential etiology-based subgroups: (i) an environmentally based group in which OCD occurs following apparent causal events such as streptococcal infections, brain injury, or atypical neuroleptic treatment; and (ii) a genomically based group in which OCD is related to chromosomal anomalies or specific genes. Considering the status of current research, the concept of OCD and OCD-related spectrum conditions seems fluid in 2010, and in need of ongoing reappraisal

    Neuroimaging Correlates of Suicidality in Decision-Making Circuits in Posttraumatic Stress Disorder

    Get PDF
    In depression, brain and behavioral correlates of decision-making differ between individuals with and without suicidal thoughts and behaviors. Though promising, it remains unknown if these potential biomarkers of suicidality will generalize to other high-risk clinical populations. To preliminarily assess whether brain structure or function tracked suicidality in individuals with posttraumatic stress disorder (PTSD), we measured resting-state functional connectivity and cortical thickness in two functional networks involved in decision-making, a ventral fronto-striatal reward network and a lateral frontal cognitive control network. Neuroimaging data and self-reported suicidality ratings, and suicide-related hospitalization data were obtained from 50 outpatients with PTSD and also from 15 healthy controls, and all were subjected to seed-based resting-state functional connectivity and cortical thickness analyses using a priori seeds from reward and cognitive control networks. First, general linear models (GLM) were used to evaluate whether ROI-to-ROI functional connectivity was predictive of self-reported suicidality after false discovery rate (FDR)-correction for multiple comparisons and covariance of age and depression symptoms. Next, regional cortical thickness statistics were included as predictors of ROI-to-ROI functional connectivity in follow-up GLMs evaluating structure-function relationships. Functional connectivity between reward regions was positively correlated with suicidality (p-FDR ≤ 0.05). Functional connectivity of the lateral pars orbitalis to anterior cingulate/paracingulate control regions also tracked suicidality (p-FDR ≤ 0.05). Furthermore, cortical thickness in anterior cingulate/paracingulate was associated with functional correlates of suicidality in the control network (p-FDR < 0.05). These results provide a preliminary demonstration that biomarkers of suicidality in decision-making networks observed in depression may generalize to PTSD and highlight the promise of these circuits as transdiagnostic biomarkers of suicidality

    A Prospective Study of the Impact of Transcranial Alternating Current Stimulation on EEG Correlates of Somatosensory Perception

    Get PDF
    The (8–12 Hz) neocortical alpha rhythm is associated with shifts in attention across sensory systems, and is thought to represent a sensory gating mechanism for the inhibitory control of cortical processing. The present preliminary study sought to explore whether alpha frequency transcranial alternating current stimulation (tACS) could modulate endogenous alpha power in the somatosensory system, and whether the hypothesized modulation would causally impact perception of tactile stimuli at perceptual threshold. We combined electroencephalography (EEG) with simultaneous brief and intermittent tACS applied over primary somatosensory cortex at individuals’ endogenous alpha frequency during a tactile detection task (n = 12 for EEG, n = 20 for behavior). EEG-measured pre-stimulus alpha power was higher on non-perceived than perceived trials, and analogous perceptual correlates emerged in early components of the tactile evoked response. Further, baseline normalized tactile detection performance was significantly lower during alpha than sham tACS, but the effect did not last into the post-tACS time period. Pre- to post-tACS changes in alpha power were linearly dependent upon baseline state, such that alpha power tended to increase when pre-tACS alpha power was low, and decrease when it was high. However, these observations were comparable in both groups, and not associated with evidence of tACS-induced alpha power modulation. Nevertheless, the tactile stimulus evoked response potential (ERP) revealed a potentially lasting impact of alpha tACS on circuit dynamics. The post-tACS ERP was marked by the emergence of a prominent peak ∼70 ms post-stimulus, which was not discernible post-sham, or in either pre-stimulation condition. Computational neural modeling designed to simulate macroscale EEG signals supported the hypothesis that the emergence of this peak could reflect synaptic plasticity mechanisms induced by tACS. The primary lesson learned in this study, which commanded a small sample size, was that while our experimental paradigm provided some evidence of an influence of tACS on behavior and circuit dynamics, it was not sufficient to induce observable causal effects of tACS on EEG-measured alpha oscillations. We discuss limitations and suggest improvements that may help further delineate a causal influence of tACS on cortical dynamics and perception in future studies

    Repeat lumbar punctures in infants with meningitis in the neonatal intensive care unit

    Get PDF
    The purpose of this study is to examine the results of repeat lumbar puncture in infants with initial positive cerebrospinal fluid (CSF) cultures in order to determine the clinical characteristics and outcomes of infants with repeat positive cultures

    Association between Nephrotoxic Drug Combinations and Acute Kidney Injury in the Neonatal Intensive Care Unit

    Get PDF
    Objective: To determine the incidence of acute kidney injury (AKI) in infants exposed to nephrotoxic drug combinations admitted to 268 neonatal intensive care units managed by the Pediatrix Medical Group. Study design: We included infants born at 22-36 weeks gestational age, ≤120 days postnatal age, exposed to nephrotoxic drug combinations, with serum creatinine measurements available, and discharged between 2007 and 2016. To identify risk factors associated with a serum creatinine definition of AKI based on the Kidney Disease: Improving Global Outcomes criteria, we performed multivariable logistic and Cox regression adjusting for gestational age, sex, birth weight, postnatal age, race/ethnicity, sepsis, respiratory distress syndrome, baseline serum creatinine, and duration of combination drug exposure. The adjusted odds of AKI were determined relative to gentamicin + indomethacin for the following nephrotoxic drug combinations: chlorothiazide + ibuprofen; chlorothiazide + indomethacin; furosemide + gentamicin; furosemide + ibuprofen; furosemide + tobramycin; ibuprofen + spironolactone; and vancomycin + piperacillin-tazobactam. Results: Among 8286 included infants, 1384 (17%) experienced AKI. On multivariable analysis, sepsis, lower baseline creatinine, and duration of combination therapy were associated with increased odds of AKI. Furosemide + tobramycin and vancomycin + piperacillin-tazobactam were associated with a decreased risk of AKI relative to gentamicin + indomethacin in both the multivariable and Cox regression models. Conclusions: In this cohort, infants receiving longer durations of nephrotoxic combination therapy had an increased odds of developing AKI
    corecore