590 research outputs found
The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest
In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979–2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC’s North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast
The development of a program analysis environment for Ada
A unit level, Ada software module testing system, called Query Utility Environment for Software Testing of Ada (QUEST/Ada), is described. The project calls for the design and development of a prototype system. QUEST/Ada design began with a definition of the overall system structure and a description of component dependencies. The project team was divided into three groups to resolve the preliminary designs of the parser/scanner: the test data generator, and the test coverage analyzer. The Phase 1 report is a working document from which the system documentation will evolve. It provides history, a guide to report sections, a literature review, the definition of the system structure and high level interfaces, descriptions of the prototype scope, the three major components, and the plan for the remainder of the project. The appendices include specifications, statistics, two papers derived from the current research, a preliminary users' manual, and the proposal and work plan for Phase 2
Parametric Forcing of Waves with Non-Monotonic Dispersion Relation: Domain Structures in Ferrofluids?
Surface waves on ferrofluids exposed to a dc-magnetic field exhibit a
non-monotonic dispersion relation. The effect of a parametric driving on such
waves is studied within suitable coupled Ginzburg-Landau equations. Due to the
non-monotonicity the neutral curve for the excitation of standing waves can
have up to three minima. The stability of the waves with respect to long-wave
perturbations is determined a phase-diffusion equation. It shows that the
band of stable wave numbers can split up into two or three sub-bands. The
resulting competition between the wave numbers corresponding to the respective
sub-bands leads quite naturally to patterns consisting of multiple domains of
standing waves which differ in their wave number. The coarsening dynamics of
such domain structures is addressed.Comment: 23 pages, 6 postscript figures, composed using RevTeX. Submitted to
PR
Scarred Patterns in Surface Waves
Surface wave patterns are investigated experimentally in a system geometry
that has become a paradigm of quantum chaos: the stadium billiard. Linear waves
in bounded geometries for which classical ray trajectories are chaotic are
known to give rise to scarred patterns. Here, we utilize parametrically forced
surface waves (Faraday waves), which become progressively nonlinear beyond the
wave instability threshold, to investigate the subtle interplay between
boundaries and nonlinearity. Only a subset (three main types) of the computed
linear modes of the stadium are observed in a systematic scan. These correspond
to modes in which the wave amplitudes are strongly enhanced along paths
corresponding to certain periodic ray orbits. Many other modes are found to be
suppressed, in general agreement with a prediction by Agam and Altshuler based
on boundary dissipation and the Lyapunov exponent of the associated orbit.
Spatially asymmetric or disordered (but time-independent) patterns are also
found even near onset. As the driving acceleration is increased, the
time-independent scarred patterns persist, but in some cases transitions
between modes are noted. The onset of spatiotemporal chaos at higher forcing
amplitude often involves a nonperiodic oscillation between spatially ordered
and disordered states. We characterize this phenomenon using the concept of
pattern entropy. The rate of change of the patterns is found to be reduced as
the state passes temporarily near the ordered configurations of lower entropy.
We also report complex but highly symmetric (time-independent) patterns far
above onset in the regime that is normally chaotic.Comment: 9 pages, 10 figures (low resolution gif files). Updated and added
references and text. For high resolution images:
http://physics.clarku.edu/~akudrolli/stadium.htm
Amplitude equations and pattern selection in Faraday waves
We present a systematic nonlinear theory of pattern selection for parametric
surface waves (Faraday waves), not restricted to fluids of low viscosity. A
standing wave amplitude equation is derived from the Navier-Stokes equations
that is of gradient form. The associated Lyapunov function is calculated for
different regular patterns to determine the selected pattern near threshold.
For fluids of large viscosity, the selected wave pattern consists of parallel
stripes. At lower viscosity, patterns of square symmetry are obtained in the
capillary regime (large frequencies). At lower frequencies (the mixed
gravity-capillary regime), a sequence of six-fold (hexagonal), eight-fold, ...
patterns are predicted. The regions of stability of the various patterns are in
quantitative agreement with recent experiments conducted in large aspect ratio
systems.Comment: 12 pages, 1 figure, Revte
Fault-tolerant protection of near-term trapped-ion topological qubits under realistic noise sources
The quest of demonstrating beneficial quantum error correction in near-term
noisy quantum processors can benefit enormously from a low-resource
optimization of fault-tolerant schemes, which are specially designed for a
particular platform considering both state-of-the-art technological
capabilities and main sources of noise. In this work, we show that
flag-qubit-based fault-tolerant techniques for active error detection and
correction, as well as for encoding of logical qubits, can be leveraged in
current designs of trapped-ion quantum processors to achieve this break-even
point of beneficial quantum error correction. Our improved description of the
relevant sources of noise, together with detailed schedules for the
implementation of these flag-based protocols, provide one of the most complete
microscopic characterizations of a fault-tolerant quantum processor to date. By
extensive numerical simulations, we provide a comparative study of flag- and
cat-based approaches to quantum error correction, and show that the superior
performance of the former can become a landmark in the success of near-term
quantum computing with noisy trapped-ion devices.Comment: new version, accepted in Phys. Rev.
The Mouse Gastrointestinal Bacteria Catalogue enables translation between the mouse and human gut microbiotas via functional mapping.
Funder: Royal SocietyHuman health and disease have increasingly been shown to be impacted by the gut microbiota, and mouse models are essential for investigating these effects. However, the compositions of human and mouse gut microbiotas are distinct, limiting translation of microbiota research between these hosts. To address this, we constructed the Mouse Gastrointestinal Bacteria Catalogue (MGBC), a repository of 26,640 high-quality mouse microbiota-derived bacterial genomes. This catalog enables species-level analyses for mapping functions of interest and identifying functionally equivalent taxa between the microbiotas of humans and mice. We have complemented this with a publicly deposited collection of 223 bacterial isolates, including 62 previously uncultured species, to facilitate experimental investigation of individual commensal bacteria functions in vitro and in vivo. Together, these resources provide the ability to identify and test functionally equivalent members of the host-specific gut microbiotas of humans and mice and support the informed use of mouse models in human microbiota research.Sir Henry Dale Fellowship jointly funded by Wellcome Trust and Royal Society [206245/Z/17/Z].
Rosetrees Trust [A2194].
Wellcome Trust [098051]
Elective Open Suprarenal Aneurysm Repair in England from 2000 to 2010 an Observational Study of Hospital Episode Statistics
Background: Open surgery is widely used as a benchmark for the results of fenestrated endovascular repair of complex abdominal aortic aneurysms (AAA). However, the existing evidence stems from single-centre experiences, and may not be reproducible in wider practice. National outcomes provide valuable information regarding the safety of suprarenal aneurysm repair.
Methods: Demographic and clinical data were extracted from English Hospital Episodes Statistics for patients undergoing elective suprarenal aneurysm repair from 1 April 2000 to 31 March 2010. Thirty-day mortality and five-year survival were analysed by logistic regression and Cox proportional hazards modeling.
Results: 793 patients underwent surgery with 14% overall 30-day mortality, which did not improve over the study period. Independent predictors of 30-day mortality included age, renal disease and previous myocardial infarction. 5-year survival was independently reduced by age, renal disease, liver disease, chronic pulmonary disease, and known metastatic solid tumour. There was significant regional variation in both 30-day mortality and 5-year survival after risk-adjustment. Regional differences in outcome were eliminated in a sensitivity analysis for perioperative outcome, conducted by restricting analysis to survivors of the first 30 days after surgery.
Conclusions: Elective suprarenal aneurysm repair was associated with considerable mortality and significant regional variation across England. These data provide a benchmark to assess the efficacy of complex endovascular repair of supra-renal aneurysms, though cautious interpretation is required due to the lack of information regarding aneurysm morphology. More detailed study is required, ideally through the mandatory submission of data to a national registry of suprarenal aneurysm repair
Wound-up phase turbulence in the Complex Ginzburg-Landau equation
We consider phase turbulent regimes with nonzero winding number in the
one-dimensional Complex Ginzburg-Landau equation. We find that phase turbulent
states with winding number larger than a critical one are only transients and
decay to states within a range of allowed winding numbers. The analogy with the
Eckhaus instability for non-turbulent waves is stressed. The transition from
phase to defect turbulence is interpreted as an ergodicity breaking transition
which occurs when the range of allowed winding numbers vanishes. We explain the
states reached at long times in terms of three basic states, namely
quasiperiodic states, frozen turbulence states, and riding turbulence states.
Justification and some insight into them is obtained from an analysis of a
phase equation for nonzero winding number: rigidly moving solutions of this
equation, which correspond to quasiperiodic and frozen turbulence states, are
understood in terms of periodic and chaotic solutions of an associated system
of ordinary differential equations. A short report of some of our results has
been published in [Montagne et al., Phys. Rev. Lett. 77, 267 (1996)].Comment: 22 pages, 15 figures included. Uses subfigure.sty (included) and
epsf.tex (not included). Related research in
http://www.imedea.uib.es/Nonlinea
- …