9,359 research outputs found

    Detection of H-alpha emission from the Magellanic Stream: evidence for an extended gaseous Galactic halo

    Full text link
    We have detected faint, diffuse HαemissionfromseveralpointsalongtheMagellanicStream,usingtheRutgersFabry−−PerotInterferometerattheCTIO1.5−mtelescope.AtpointsontheleadingedgesoftheHIcloudsMSII,MSIII,andMSIV,wedetectH\alpha emission from several points along the Magellanic Stream, using the Rutgers Fabry--Perot Interferometer at the CTIO 1.5-m telescope. At points on the leading edges of the H I clouds MS II, MS III, and MS IV, we detect H\alpha emission of surface brightness 0.37±0.020.37 \pm 0.02 Rayleighs, 0.21±0.040.21 \pm 0.04 R, and 0.20±0.020.20 \pm 0.02 R respectively, corresponding to emission measures of 1.0 to 0.5 \cmsixpc. We have observed several positions near the MS IV concentration, and find that the strongest emission is on the sharp leading-edge density gradient. There is less emission at points away from the gradient, and halfway between MS III and MS IV the Hαsurfacebrightnessis\alpha surface brightness is < 0.04R.WeattributetheH R. We attribute the H\alpha emission at cloud leading edges to heating of the Stream clouds by ram pressure from ionized gas in the halo of the Galaxy. These observations suggest that ram pressure from halo gas plays a large role in stripping the Stream out of the Magellanic Clouds. They also suggest the presence of a relatively large density of gas, nH∌10−4cm−3n_{\rm H} \sim 10^{-4} cm^{-3}, in the Galactic halo at ∌50\sim 50 kpc radius, and far above the Galactic plane, b∌−80deg⁥b \sim -80\deg. This implies that the Galaxy has a very large baryonic, gaseous extent, and supports models of Lyman-$\alpha and metal-line QSO absorption lines in which the absorption systems reside in extended galactic halos.Comment: 15 pages, aaspp latex, + 1 table & 3 figures. Accepted in A.J. Also available from http://www.physics.rutgers.edu/~bweiner/astro/papers

    A Persistent Simulation Environment for Autonomous Systems

    Get PDF
    The age of Autonomous Unmanned Aircraft Systems (AUAS) is creating new challenges for the accreditation and certification requiring new standards, policies and procedures that sanction whether a UAS is safe to fly. Establishing a basis for certification of autonomous systems via research into trust and trustworthiness is the focus of Autonomy Teaming and TRAjectories for Complex Trusted Operational Reliability (ATTRACTOR), a new NASA Convergent Aeronautics Solution (CAS) project. Simulation Environments to test and evaluate AUAS decision making may be a low-cost solution to help certify that various AUAS systems are trustworthy enough to be allowed to fly in current general and commercial aviation airspace. NASA is working to build a peer-to-peer persistent simulation (P3 Sim) environment. The P3 Sim will be a Massively Multiplayer Online (MMO) environment were AUAS avatars can interact with a complex dynamic environment and each other. The focus of the effort is to provide AUAS researchers a low-cost intuitive testing environment that will aid training for and assessment of decisions made by autonomous systems such as AUAS. This presentation focuses on the design approach and challenges faced in development of the P3 Sim Environment is support of investigating trustworthiness of autonomous systems

    MEASURING SQUASH HITTING ACCURACY USING THE ‘HUNT SQUASH ACCURACY TEST’

    Get PDF
    The purpose of this study was to determine the reliability and validity of the Hunt Squash Accuracy Test (HSAT). Reliability: ten male squash players performed the HSAT twice within seven days. Each test consisted of 375 shots across 13 different types of squash strokes on both the forehand and backhand side. Reliability was measured using a typical error (TE) score from consecutive pairs of trials. The overall TE score for the test was 1.82%, demonstrating that the HSAT is very reliable at the 90% confidence limit. Validity: measured using a correlation analysis comparing the results of 8 individual’s HSAT scores against a round-robin tournament ranking where all 8 players played against each other, as well as coach rankings of player ability. Validity was considered high with correlation coefficients of 0.93 for both the round-robin and coach ranking

    Lynch syndrome: from detection to treatment

    Get PDF
    Lynch syndrome (LS) is an inherited cancer predisposition syndrome associated with high lifetime risk of developing tumours, most notably colorectal and endometrial. It arises in the context of pathogenic germline variants in one of the mismatch repair genes, that are necessary to maintain genomic stability. LS remains underdiagnosed in the population despite national recommendations for empirical testing in all new colorectal and endometrial cancer cases. There are now well-established colorectal cancer surveillance programmes, but the high rate of interval cancers identified, coupled with a paucity of high-quality evidence for extra-colonic cancer surveillance, means there is still much that can be achieved in diagnosis, risk-stratification and management. The widespread adoption of preventative pharmacological measures is on the horizon and there are exciting advances in the role of immunotherapy and anti-cancer vaccines for treatment of these highly immunogenic LS-associated tumours. In this review, we explore the current landscape and future perspectives for the identification, risk stratification and optimised management of LS with a focus on the gastrointestinal system. We highlight the current guidelines on diagnosis, surveillance, prevention and treatment and link molecular disease mechanisms to clinical practice recommendations

    The soil and plant biogeochemistry sampling design for The National Ecological Observatory Network

    Get PDF
    Human impacts on biogeochemical cycles are evident around the world, from changes to forest structure and function due to atmospheric deposition, to eutrophication of surface waters from agricultural effluent, and increasing concentrations of carbon dioxide (CO2) in the atmosphere. The National Ecological Observatory Network (NEON) will contribute to understanding human effects on biogeochemical cycles from local to continental scales. The broad NEON biogeochemistry measurement design focuses on measuring atmospheric deposition of reactive mineral compounds and CO2 fluxes, ecosystem carbon (C) and nutrient stocks, and surface water chemistry across 20 eco‐climatic domains within the United States for 30 yr. Herein, we present the rationale and plan for the ground‐based measurements of C and nutrients in soils and plants based on overarching or “high‐level” requirements agreed upon by the National Science Foundation and NEON. The resulting design incorporates early recommendations by expert review teams, as well as recent input from the larger natural sciences community that went into the formation and interpretation of the requirements, respectively. NEON\u27s efforts will focus on a suite of data streams that will enable end‐users to study and predict changes to biogeochemical cycling and transfers within and across air, land, and water systems at regional to continental scales. At each NEON site, there will be an initial, one‐time effort to survey soil properties to 1 m (including soil texture, bulk density, pH, baseline chemistry) and vegetation community structure and diversity. A sampling program will follow, focused on capturing long‐term trends in soil C, nitrogen (N), and sulfur stocks, isotopic composition (of C and N), soil N transformation rates, phosphorus pools, and plant tissue chemistry and isotopic composition (of C and N). To this end, NEON will conduct extensive measurements of soils and plants within stratified random plots distributed across each site. The resulting data will be a new resource for members of the scientific community interested in addressing questions about long‐term changes in continental‐scale biogeochemical cycles, and is predicted to inspire further process‐based research
    • 

    corecore