165 research outputs found

    Cohesin and Its Regulation: On the Logic of X-Shaped Chromosomes

    Get PDF
    The X shape of chromosomes is one of the iconic images in biology. Cohesin actually connects the sister chromatids along their entire length, from S phase until mitosis. Then, cohesin’s antagonist Wapl allows the separation of chromosome arms by opening a DNA exit gate in cohesin rings. Centromeres are protected against this removal activity, resulting in the X shape of mitotic chromosomes. The destruction of the remaining centromeric cohesin by Separase triggers chromosome segregation. We review the two-phase regulation of cohesin removal and discuss how this affects chromosome alignment and decatenation in mitosis and cohesin reloading in the next cell cycle

    Competition shapes the landscape of X-chromosome-linked genetic diversity

    Get PDF
    X chromosome inactivation (XCI) generates clonal heterogeneity within XX individuals. Combined with sequence variation between human X chromosomes, XCI gives rise to intra-individual clonal diversity, whereby two sets of clones express mutually exclusive sequence variants present on one or the other X chromosome. Here we ask whether such clones merely co-exist or potentially interact with each other to modulate the contribution of X-linked diversity to organismal development. Focusing on X-linked coding variation in the human STAG2 gene, we show that Stag2variant clones contribute to most tissues at the expected frequencies but fail to form lymphocytes in Stag2WTStag2variant mouse models. Unexpectedly, the absence of Stag2variant clones from the lymphoid compartment is due not solely to cell-intrinsic defects but requires continuous competition by Stag2WT clones. These findings show that interactions between epigenetically diverse clones can operate in an XX individual to shape the contribution of X-linked genetic diversity in a cell-type-specific manner

    Releasing activity disengages Cohesin’s Smc3/Scc1 interface in a process blocked by Acetylation

    Get PDF
    Sister chromatid cohesion conferred by entrapment of sister DNAs within a tripartite ring formed between cohesin’s Scc1, Smc1, and Smc3 subunits is created during S and destroyed at anaphase through Scc1 cleavage by separase. Cohesin’s association with chromosomes is controlled by opposing activities: loading by Scc2/4 complex and release by a separase- independent releasing activity as well as by cleavage. Coentrapment of sister DNAs at replication is accompanied by acetylation of Smc3 by Eco1, which blocks releasing activity and ensures that sisters remain connected. Because fusion of Smc3 to Scc1 prevents release and bypasses the requirement for Eco1, we suggested that release is mediated by disengagement of the Smc3/Scc1 interface. We show that mutations capable of bypassing Eco1 in Smc1, Smc3, Scc1, Wapl, Pds5, and Scc3 subunits reduce dissociation of N-terminal cleavage fragments of Scc1 (NScc1) from Smc3. This process involves interaction between Smc ATPase heads and is inhibited by Smc3 acetylation

    Cohesin Releases DNA through Asymmetric ATPase-Driven Ring Opening

    Get PDF
    Cohesin stably holds together the sister chromatids from S phase until mitosis. To do so, cohesin must be protected against its cellular antagonist Wapl. Eco1 acetylates cohesin's Smc3 subunit, which locks together the sister DNAs. We used yeast genetics to dissect how Wapl drives cohesin from chromatin and identified mutants of cohesin that are impaired in ATPase activity but remarkably confer robust cohesion that bypasses the need for the cohesin protectors Eco1 in yeast and Sororin in human cells. We uncover a functional asymmetry within the heart of cohesin's highly conserved ABC-like ATPase machinery and find that both ATPase sites contribute to DNA loading, whereas DNA release is controlled specifically by one site. We propose that Smc3 acetylation locks cohesin rings around the sister chromatids by counteracting an activity associated with one of cohesin's two ATPase sites. Tight regulation of DNA entrapment and release by the cohesin complex is crucial for its multiple cellular functions. Elbatsh et al. find that cohesin's release from DNA requires an activity associated with one of its ATPase sites, whereas both sites control cohesin's loading onto DNA

    Joint ESPGHAN/NASPGHAN Guidelines for the Management of Helicobacter pylori in Children and Adolescents ( Update 2016)

    Get PDF
    Background: Because of the changing epidemiology of Helicobacter pylori infection and low efficacy of currently recommended therapies, an update of the European Society for Paediatric Gastroenterology Hepatology and Nutrition/North American Society for Pediatric Gastroenterology, Hepatology and Nutrition recommendations for the diagnosis and management of H pylori infection in children and adolescents is required. Methods: Asystematic review of the literature (time period: 2009-2014) was performed. Representatives of both societies evaluated the quality of evidence using GRADE (Grading of Recommendation Assessment, Development, and Evaluation) to formulate recommendations, which were voted upon and finalized using a Delphi process and face-to-face meeting. Results: The consensus group recommended that invasive diagnostic testing for Hpylori be performed only when treatment will be offered if tests are positive. To reach the aim of a 90% eradication rate with initial therapy, antibiotics should be tailored according to susceptibility testing. Therapy should be administered for 14 days, emphasizing strict adherence. Clarithromycin-containing regimens should be restricted to children infected with susceptible strains. When antibiotic susceptibility profiles are not known, high-dose triple therapy with proton pump inhibitor, amoxicillin, and metronidazole for 14 days or bismuth-based quadruple therapy is recommended. Success of therapy should be monitored after 4 to 8 weeks by reliable noninvasive tests. Conclusions: The primary goal of clinical investigation is to identify the cause of upper gastrointestinal symptoms rather than H pylori infection. Therefore, we recommend against a test and treat strategy. Decreasing eradication rates with previously recommended treatments call for changes to first-line therapies and broader availability of culture or molecular-based testing to tailor treatment to the individual child

    Whole brain 31P MRSI at 7T with a dual-tuned receive array

    Get PDF
    Purpose: The design and performance of a novel head coil setup for 31P spectroscopy at ultra‐high field strengths (7T) is presented. The described system supports measurements at both the 1H and 31P resonance frequencies. Methods: The novel coil consists of 2, actively detunable, coaxial birdcage coils to give homogeneous transmit, combined with a double resonant 30 channel receive array. This allows for anatomical imaging combined with 31P acquisitions over the whole head, without changing coils or disturbing the subject. A phosphate buffer phantom and 3 healthy volunteers were scanned with a pulse acquire CSI sequence using both the novel array coil and a conventional transceiver birdcage. Four different methods of combining the array channels were compared at 3 different levels of SNR. Results: The novel coil setup delivers significantly increased 31P SNR in the peripheral regions of the brain, reaching up to factor 8, while maintaining comparable performance relative to the birdcage in the center. Conclusions: The new system offers the potential to acquire whole brain 31P MRSI with superior signal relative to the standard options

    Forecasting the response of Earth's surface to future climatic and land use changes: a review of methods and research needs

    Get PDF
    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail

    Alcohol consumption and sport: a cross-sectional study of alcohol management practices associated with at-risk alcohol consumption at community football clubs

    Get PDF
    BackgroundExcessive alcohol consumption is responsible for considerable harm from chronic disease and injury. Within most developed countries, members of sporting clubs participate in at-risk alcohol consumption at levels above that of communities generally. There has been limited research investigating the predictors of at-risk alcohol consumption in sporting settings, particularly at the non-elite level. The purpose of this study was to examine the association between the alcohol management practices and characteristics of community football clubs and at-risk alcohol consumption by club members.MethodsA cross sectional survey of community football club management representatives and members was conducted. Logistic regression analysis (adjusting for clustering by club) was used to determine the association between the alcohol management practices (including alcohol management policy, alcohol-related sponsorship, availability of low- and non-alcoholic drinks, and alcohol-related promotions, awards and prizes) and characteristics (football code, size and location) of sporting clubs and at-risk alcohol consumption by club members.ResultsMembers of clubs that served alcohol to intoxicated people [OR: 2.23 (95% CI: 1.26-3.93)], conducted &lsquo;happy hour&rsquo; promotions [OR: 2.84 (95% CI: 1.84-4.38)] or provided alcohol-only awards and prizes [OR: 1.80 (95% CI: 1.16-2.80)] were at significantly greater odds of consuming alcohol at risky levels than members of clubs that did not have such alcohol management practices. At-risk alcohol consumption was also more likely among members of clubs with less than 150 players compared with larger clubs [OR:1.45 (95% CI: 1.02-2.05)] and amongst members of particular football codes.ConclusionsThe findings of this study suggest a need and opportunity for the implementation of alcohol harm reduction strategies targeting specific alcohol management practices at community football clubs.<br /

    Representing the function and sensitivity of coastal interfaces in earth system models

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ward, N. D., Megonigal, J. P., Bond-Lamberty, B., Bailey, V. L., Butman, D., Canuel, E. A., Diefenderfer, H., Ganju, N. K., Goni, M. A., Graham, E. B., Hopkinson, C. S., Khangaonkar, T., Langley, J. A., McDowell, N. G., Myers-Pigg, A. N., Neumann, R. B., Osburn, C. L., Price, R. M., Rowland, J., Sengupta, A., Simard, M., Thornton, P. E., Tzortziou, M., Vargas, R., Weisenhorn, P. B., & Windham-Myers, L. Representing the function and sensitivity of coastal interfaces in earth system models. Nature Communications, 11(1), (2020): 2458, doi:10.1038/s41467-020-16236-2.Between the land and ocean, diverse coastal ecosystems transform, store, and transport material. Across these interfaces, the dynamic exchange of energy and matter is driven by hydrological and hydrodynamic processes such as river and groundwater discharge, tides, waves, and storms. These dynamics regulate ecosystem functions and Earth’s climate, yet global models lack representation of coastal processes and related feedbacks, impeding their predictions of coastal and global responses to change. Here, we assess existing coastal monitoring networks and regional models, existing challenges in these efforts, and recommend a path towards development of global models that more robustly reflect the coastal interface.Funding for this work was provided by Pacific Northwest National Laboratory (PNNL) Laboratory Directed Research & Development (LDRD) as part of the Predicting Ecosystem Resilience through Multiscale Integrative Science (PREMIS) Initiative. PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. Additional support to J.P.M. was provided by the NSF-LTREB program (DEB-0950080, DEB-1457100, DEB-1557009), DOE-TES Program (DE-SC0008339), and the Smithsonian Institution. This manuscript was motivated by discussions held by co-authors during a three-day workshop at PNNL in Richland, WA: The System for Terrestrial Aquatic Research (STAR) Workshop: Terrestrial-Aquatic Research in Coastal Systems. The authors thank PNNL artist Nathan Johnson for preparing the figures in this manuscript and Terry Clark, Dr. Charlette Geffen, and Dr. Nancy Hess for their aid in organizing the STAR workshop. The authors thank all workshop participants not listed as authors for their valuable insight: Lihini Aluwihare (contributed to biogeochemistry discussions and development of concept for Fig. 3), Gautam Bisht (contributed to modeling discussion), Emmett Duffy (contributed to observational network discussions), Yilin Fang (contributed to modeling discussion), Jeremy Jones (contributed to biogeochemistry discussions), Roser Matamala (contributed to biogeochemistry discussions), James Morris (contributed to biogeochemistry discussions), Robert Twilley (contributed to biogeochemistry discussions), and Jesse Vance (contributed to observational network discussions). A full report on the workshop discussions can be found at https://www.pnnl.gov/publications/star-workshop-terrestrial-aquatic-research-coastal-systems
    • 

    corecore