57 research outputs found

    The histone H3.1 variant regulates TONSOKU-mediated DNA repair during replication

    Get PDF
    The tail of replication-dependent histone H3.1 varies from that of replication-independent H3.3 at the amino acid located at position 31 in plants and animals, but no function has been assigned to this residue to demonstrate a unique and conserved role for H3.1 during replication. Here, we show that TONSOKU (TSK/TONSL), which rescues broken replication forks, specifically interacts with H3.1 via recognition of alanine 31 by its tetratricopeptide repeat domain. Our results indicate that genomic instability in the absence of ATXR5/ATXR6-catalyzed H3K27me1 in plants depends on H3.1, TSK and DNA polymerase theta (Pol Ξ). Overall, this work reveals an H3.1-specific function during replication and the common strategy used in multicellular eukaryotes for regulating post-replicative chromatin maturation and TSK, which relies on histone mono-methyltransferases and reading the H3.1 variant

    Practical Radiosynthesis and Preclinical Neuroimaging of [11C]isradipine, a Calcium Channel Antagonist

    No full text
    In the interest of developing in vivo positron emission tomography (PET) probes for neuroimaging of calcium channels, we have prepared a carbon-11 isotopologue of a dihydropyridine Ca2+-channel antagonist, isradipine. Desmethyl isradipine (4-(benzo[c][1,2,5]oxadiazol-4-yl)-5-(isopropoxycarbonyl)-2,6-dimethyl-1,4-dihydropyridine -3-carboxylic acid) was reacted with [11C]CH3I in the presence of tetrabutylammonium hydroxide in DMF in an HPLC injector loop to produce the radiotracer in a good yield (6 ± 3% uncorrected radiochemical yield) and high specific activity (143 ± 90 GBq·”mol−1 at end-of-synthesis). PET imaging of normal rats revealed rapid brain uptake at baseline (0.37 ± 0.08% ID/cc (percent of injected dose per cubic centimeter) at peak, 15–60 s), which was followed by fast washout. After pretreatment with isradipine (2 mg·kg−1, i.p.), whole brain radioactivity uptake was diminished by 25%–40%. This preliminary study confirms that [11C]isradipine can be synthesized routinely for research studies and is brain penetrating. Further work on Ca2+-channel radiotracer development is planned

    Unprotected Aziridine Aldehydes in Isocyanide-based Multicomponent Reactions

    No full text
    While unprotected amino aldehydes are typically not isolable due to imine formation and consequent polymerization, stable unprotected aziridine aldehydes are useful and available reagents. Moreover, reversible hemiacetal and hemiaminal formation enable these compounds to reveal both their electrophilic and nucleophilic functional groups. This exceptional arrangement allows for aziridine aldehyde dimers to participate in and disrupt the mechanisms of an array of well-known organic reactions, including isocyanide-based multicomponent reactions. The scope and selectivity patterns of aziridine aldehyde induced amino acid or peptide macrocyclization have been investigated. A small library of constrained tri-, tetra-, and penta-peptide macrocycles – representing the most difficult cyclic peptides to synthesize – has been prepared. The scope of aziridine aldehyde participation in multicomponent reactions was also expanded to Ugi and Passerini reactions that do not employ tethered amine and acid functional groups. In order to facilitate cellular imaging of peptide macrocycles a fluorescent isocyanide reagent was prepared and applied to prepare mitochondrial targeting macrocycles. Thioester isocyanide reagents were synthesized to enable rapid assembly of cycle-tail peptides through ligation technology.Ph

    Interrupted Aza-Wittig Reactions Using Iminophosphoranes to Synthesize 11C-Carbonyls

    No full text
    Iminophosphoranes are reported as convenient precursors to amides, ureas, carbamates and other carbonyl-containing molecules through CO2-fixation. Key to this transformation with stable isotopes and carbon-11 is interception of the reactive isocyanate intermediate. Automated synthesis and isolation of PET radiopharmaceuticals is achieved

    Fast Carbon Isotope Exchange of Carboxylic Acids Enabled by Organic Photoredox Catalysis

    No full text
    Carbazole/cyanobenzene photocatalysts promote the direct isotopic carboxylate exchange of C(sp3 )-acids with labelled CO2. Substrates that are not compatible with transition metal catalyzed degradation-reconstruction approaches or prone to thermally induced reversible decarboxylation undergo isotopic incorporation at room temperature in short reaction times. The radiolabelling of drug molecules and precursors with [11C]CO2 is demonstrated

    Stereoselective 11C Labeling of a “Native” Tetrapeptide by Using Asymmetric Phase-Transfer Catalyzed Alkylation Reactions

    No full text
    The first 11C-labeled unmodified (“native”) peptide is described by alkylation of a tetrapeptide Schiff base, which was achieved by an automated five-step radiochemical reaction. In a proof-of-concept study, [11C]Phe-d-Trp-Lys-Thr was synthesized. This tetrapeptide is the essential pharmacophore of octreotide, an antagonist of somatostatin receptors. The asymmetric alkylation with chiral phase-transfer catalysts enabled direct labeling of a variety of isolated 11C-peptides in a highly stereoselective manner (94 % de) with acceptable radiochemical yields (9–10 %) and practical specific activities (15–35 GBq ”mol–1 or 405–945 mCi ”mol–1) at the end of synthesis. This novel methodology provides a powerful new radiosynthetic method to access novel, stereochemically pure carbon-11-labeled native small peptides ready for in vivo studies

    Shifting the Energy Landscape of Multicomponent Reactions Using Aziridine Aldehyde Dimers: A Mechanistic Study

    No full text
    A multicomponent reaction between an aziridine aldehyde dimer, isocyanide, and l-proline to afford a chiral piperazinone was studied to gain insight into the stereodetermining and rate-limiting steps of the reaction. The stereochemistry of the reaction was found to be determined by isocyanide addition, while the rate-limiting step was found to deviate from traditional isocyanide-based multicomponent reactions. A first-order rate dependence on aziridine aldehyde dimer and a zero-order rate dependence on all other reagents have been obtained. Computations at the MPWPW91/6-31G­(d) level supported the experimental kinetic results and provide insight into the overall mechanism and the factors contributing to stereochemical induction. These factors are similar to traditional isocyanide-based multicomponent reactions, such as the Ugi reaction. The computations revealed that selective formation of a <i>Z</i>-iminium ion plays a key role in controlling the stereoselectivity of isocyanide addition, and the carboxylate group of l-proline mediates stereofacial addition. These conclusions are expected to be applicable to a wide range of reported stereoselective Ugi reactions and provide a basis for understanding the related macrocyclization of peptides with aziridine aldehydes
    • 

    corecore