5,054 research outputs found

    Trypanosoma brucei gambiense in domestic livestock of Kogo and Mbini foci (Equatorial Guinea).

    No full text
    OBJECTIVE: To evaluate Trypanosoma brucei gambiense infection in peri-domestic livestock from Kogo and Mbini foci (Equatorial Guinea) in order to investigate its possible implication in the sleeping sickness transmission cycle in these hypoendemic foci. METHODS: Samples from 698 domestic animals (goats, sheep and pigs) from trypanosomiasis-endemic localities of Kogo and Mbini foci were tested for animal trypanosomes and T. b. gambiense (group I) by species-specific polymerase chain reaction. RESULTS: Trypanosoma brucei s.l., the predominant trypanosome species, was detected in 182 (52.6%) samples from Mbini and in 127 (36.1%) samples from Kogo. T. b. gambiense was only identified in seven (2%) of the Mbini samples and one co-infection (with T. vivax) was observed. CONCLUSION: The occurrence of T. b. gambiense in peri-domestic livestock in Mbini and its absence in Kogo could explain the epidemiological differences between the two foci and could have significant implications for sleeping sickness control in Equatorial Guinea

    Soil macrofauna communities under integrated crop-livestock systems in a cerrado ferralsol, Brazil (2007).

    Get PDF
    bitstream/item/78953/1/p2007-32.pd

    Detailed study of the direct numerical observation of the Kramers turnover in the LiNC⇌LiCN isomerization rate

    Full text link
    The following article appeared in Journal of Chemical Physics 137.20 (2012): 204301 and may be found at http://scitation.aip.org/content/aip/journal/jcp/137/20/10.1063/1.4766257According to Kramers, rates of molecular process are expected to follow a rise and fall from low friction (at little to no interaction with the environment) to high friction (at typical liquid densities and above). This so-called Kramers turnover was recently observed and delineated in the case of the LiNC⇌LiCN isomerization reaction in the presence of an argon bath [P. GarcĂ­a-MĂŒller, R. Hernandez, R. M. Benito, and F. Borondo, Phys. Rev. Lett. 101, 178302 (2008)]. The rates were obtained using direct molecular dynamics of an all-atom representation and the Langevin dynamics of a projected representation. We now provide further evidence that the forward and backward rates are indeed exhibiting the turnover. The rates are also seen to agree remarkably well with the Pollak-Grabert-HĂ€nggi rate formulas in regimes satisfying the theory underlying assumptions. At higher temperatures, when the theory is expected to fail, the solvated LiCN isomerization continues to exhibit activated dynamics following the turnoverThis work has been supported by the Spanish MINECO under projects MTM2009-14621 and ICMAT Severo Ochoa SEV-2011-0087. It also has been partially supported by the U.S. National Science Foundation under Grant No. CHE-1112067. Travel between partners was partially supported through the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA Grant Agreement No. 29497

    Solvent-Induced Acceleration of the Rate of Activation of a Molecular Reaction

    Get PDF
    An increase in the rates of activated processes with the coupling to the solvent has long been predicted through the phenomenological Langevin equation in the weak coupling regime. However, its direct observation in particle-based models has been elusive because the coupling typically places the processes in the spacial-diffusion limited regime wherein rates decrease with increasing friction. In this work, the forward and backward reaction rates of the LiNC Ð LiCN isomerization reaction in a bath of argon atoms at various densities have been calculated directly using molecular dynamics trajectories. The so-called Kramers turnover in the rate with microscopic friction is clearly visible, thus providing direct and unambiguous evidence for the energy-diffusion regime in which rates increase with friction

    The host of the Type I SLSN 2017egm: A young, sub-solar metallicity environment in a massive spiral galaxy

    Get PDF
    Here we present an integral-field study of the massive, high-metallicity spiral NGC 3191, the host of SN 2017egm, the closest SLSN Type I to date. We use data from PMAS/CAHA and the public MaNGA survey to shed light on the properties of the SLSN site and the origin of star-formation in this non-starburst spiral galaxy. We map the physical properties different \ion{H}{II} regions throughout the galaxy and characterize their stellar populations using the STARLIGHT fitting code. Kinematical information allows to study a possible interaction with its neighbouring galaxy as the origin of recent star formation activity which could have caused the SLSN. NGC 3191 shows intense star-formation in the western part with three large SF regions of low metallicity. The central regions of the host have a higher metallicity, lower specific star-formation rate and lower ionization. Modeling the stellar populations gives a different picture: The SLSN region has two dominant stellar populations with different ages, the youngest one with an age of 2-10 Myr and lower metallicity, likely the population from which the SN progenitor originated. Emission line kinematics of NGC 3191 show indications of interaction with its neighbour MCG+08-19-017 at ∌\sim45 kpc, which might be responsible for the recent starburst. In fact, this galaxy pair has in total hosted 4 SNe, 1988B (Type Ia), SN 2003ds (Type Ic in MCG+08-19-017), PTF10bgl (SLSN-Type II) and 2017egm, underlying the enhanced SF in both galaxies due to interaction. Our study shows that one has to be careful interpreting global host and even gas properties without looking at the stellar population history of the region. SLSNe seem to still be consistent with massive stars (>> 20 M⊙_\odot) requiring low (<0.6Z⊙< 0.6Z_{\odot}) metallicity and those environments can also occur in massive, late-type galaxies but not necessarily starbursts.Comment: Accepted for publication in A&A, 13 pages, 11 figures, 7 tables. Abstract has been reduced to match arXiv form requirement

    Loop Quantum Gravity and the The Planck Regime of Cosmology

    Full text link
    The very early universe provides the best arena we currently have to test quantum gravity theories. The success of the inflationary paradigm in accounting for the observed inhomogeneities in the cosmic microwave background already illustrates this point to a certain extent because the paradigm is based on quantum field theory on the curved cosmological space-times. However, this analysis excludes the Planck era because the background space-time satisfies Einstein's equations all the way back to the big bang singularity. Using techniques from loop quantum gravity, the paradigm has now been extended to a self-consistent theory from the Planck regime to the onset of inflation, covering some 11 orders of magnitude in curvature. In addition, for a narrow window of initial conditions, there are departures from the standard paradigm, with novel effects, such as a modification of the consistency relation involving the scalar and tensor power spectra and a new source for non-Gaussianities. Thus, the genesis of the large scale structure of the universe can be traced back to quantum gravity fluctuations \emph{in the Planck regime}. This report provides a bird's eye view of these developments for the general relativity community.Comment: 23 pages, 4 figures. Plenary talk at the Conference: Relativity and Gravitation: 100 Years after Einstein in Prague. To appear in the Proceedings to be published by Edition Open Access. Summarizes results that appeared in journal articles [2-13

    Discovery of Bisamide-heterocycles as Inhibitors of Scavenger Receptor BI (SR-BI)-mediated Lipid Uptake

    Get PDF
    A new series of potent inhibitors of cellular lipid uptake from HDL particles mediated by scavenger receptor, class B, type I (SR-BI) was identified. The series was identified via a high-throughput screen of the National Institutes of Health Molecular Libraries Small Molecule Repository (NIH MLSMR) that measured the transfer of the fluorescent lipid DiI from HDL particles to CHO cells overexpressing SR-BI. The series is characterized by a linear peptidomimetic scaffold with two adjacent amide groups, as well as an aryl-substituted heterocycle. Analogs of the initial hit were rapidly prepared via Ugi 4-component reaction, and select enantiopure compounds were prepared via a stepwise sequence. Structure–activity relationship (SAR) studies suggest an oxygenated arene is preferred at the western end of the molecule, as well as highly lipophilic substituents on the central and eastern nitrogens. Compound 5e, with (R)-stereochemistry at the central carbon, was designated as probe ML279. Mechanistic studies indicate that ML279 stabilizes the interaction of HDL particles with SR-BI, and its effect is reversible. It shows good potency (IC50 = 17 nM), is non-toxic, plasma stable, and has improved solubility over our alternative probe ML278

    Superscars in the LiNC=LiCN isomerization reaction

    Full text link
    We demonstrate the existence of superscarring in the LiNC=LiCN isomerization reaction described by a realistic potential interaction in the range of readily attainable experimental energies. This phenomenon arises as the effect of two periodic orbits appearing "out of the blue"in a saddle--node bifurcation taking place in the dynamics of the system. Potential practical consequences of this superlocalization in the corresponding wave functions are also considered.Comment: 6 pages, 5 figures. to appear in EP
    • 

    corecore