743 research outputs found

    Transport properties of N=4 supersymmetric Yang-Mills theory at finite coupling

    Full text link
    Gauge theory-string theory duality describes strongly coupled N=4 supersymmetric SU(n) Yang-Mills theory at finite temperature in terms of near extremal black 3-brane geometry in type IIB string theory. We use this correspondence to compute the leading correction in inverse 't Hooft coupling to the shear diffusion constant, bulk viscosity and the speed of sound in the large-n N=4 supersymmetric Yang-Mills theory plasma. The transport coefficients are extracted from the dispersion relation for the shear and the sound wave lowest quasinormal modes in the leading order alpha'-corrected black D3 brane geometry. We find the shear viscosity extracted from the shear diffusion constant to agree with result of [hep-th/0406264]; also, the leading correction to bulk viscosity and the speed of sound vanishes. Our computation provides a highly nontrivial consistency check on the hydrodynamic description of the alpha'-corrected nonextremal black branes in string theory.Comment: 19 pages, LaTe

    On Tree Amplitudes in Gauge Theory and Gravity

    Full text link
    The BCFW recursion relations provide a powerful way to compute tree amplitudes in gauge theories and gravity, but only hold if some amplitudes vanish when two of the momenta are taken to infinity in a particular complex direction. This is a very surprising property, since individual Feynman diagrams all diverge at infinite momentum. In this paper we give a simple physical understanding of amplitudes in this limit, which corresponds to a hard particle with (complex) light-like momentum moving in a soft background, and can be conveniently studied using the background field method exploiting background light-cone gauge. An important role is played by enhanced spin symmetries at infinite momentum--a single copy of a "Lorentz" group for gauge theory and two copies for gravity--which together with Ward identities give a systematic expansion for amplitudes at large momentum. We use this to study tree amplitudes in a wide variety of theories, and in particular demonstrate that certain pure gauge and gravity amplitudes do vanish at infinity. Thus the BCFW recursion relations can be used to compute completely general gluon and graviton tree amplitudes in any number of dimensions. We briefly comment on the implications of these results for computing massive 4D amplitudes by KK reduction, as well understanding the unexpected cancelations that have recently been found in loop-level gravity amplitudes.Comment: 22 pages, 3 figure

    Effects of sub-optimal temperatures on seed germination of three warm-season turfgrasses with perspectives of cultivation in transition zone

    Get PDF
    Warm-season turfgrass species prevail in tropical and subtropical areas, but can also be grown in the transition zone. In this case, cold tolerance is a key aspect for germination and successful turfgrass establishment. The germination response to sub-optimal temperatures was investigated for Cynodon dactylon (cvs Jackpot, La Paloma, Transcontinental, Yukon, Riviera), Buchloe dactyloides (cv SWI 2000) and Paspalum vaginatum (cv Pure Dynasty). Four temperature regimes were applied, i.e., 20/30 °C, 15/25 °C, 10/20 °C and 5/15 °C, with a 12:12 h (light:dark) photoperiod. Germination assays were performed twice, with six replicates (Petri dishes) per treatment in each experiment, fifty seeds per dish. The final germinated percentages at last inspection time (FGP) were obtained for each Petri dish and processed by using a generalized linear mixed model (binomial error and logit link). Germination curves were fitted to each Petri dish by using time-to-event methods and germination rates (GR) for the 10th, 20th and 30th percentiles were derived and used to fit a linear thermal-time model. For all cultivars, FGP decreased with decreasing mean daily temperatures. Base temperatures (Tb) ranged between 11.4 °C and 17.0 °C, while the thermal time to obtain 30% germination ranged from 51.3 °C day for SWI 2000 to 144.0 °C day for Pure Dynasty. The estimated parameters were used to predict germination time in the field, considering the observed soil temperatures in Legnaro. The estimated date for the beginning of germination in the field would range from early April for SWI 2000 and Transcontinental to mid-May for Riviera. These results might be used as a practical support for planning spring sowing, which is crucial for successful turfgrass establishment, especially without irrigation

    Effective action for Einstein-Maxwell theory at order RF**4

    Full text link
    We use a recently derived integral representation of the one-loop effective action in Einstein-Maxwell theory for an explicit calculation of the part of the effective action containing the information on the low energy limit of the five-point amplitudes involving one graviton, four photons and either a scalar or spinor loop. All available identities are used to get the result into a relatively compact form.Comment: 13 pages, no figure

    Model based, detailed fault analysis in the CERN PS complex equipment

    Get PDF
    In the CERN PS Complex of accelerators, about a thousand of equipment of various type (power converters, RF cavities, beam measurement devices, vacuum systems etc...) are controlled using the so-called Control Protocol, already described in previous Conferences. This Protocol, a model based equipment access standard, provides, amongst other facilities, a uniform and structured fault description and report feature. The faults are organized in categories, following their gravity, and are presented at two levels: the first level is global and identical for all devices, the second level is very detailed and adapted to the peculiarities of each single device. All the relevant information is provided by the equipment specialists and is appropriately stored in static and real time data bases; in this way a unique set of data driven application programs can always cope with existing and newly added equipment. Two classes of applications have been implemented, the first one is intended for control room alarm purposes, and the second one is oriented for specialists diagnostics. The system is completed by a fault history report facility permitting easy retrieval of faults previously occurred, for example during the night

    Epigenetic therapies for heart failure: Current insights and future potential

    Get PDF
    Despite the current reductionist approach providing an optimal indication for diagnosis and treatment of patients with heart failure with reduced ejection fraction (HFrEF), there are no standard pharmacological therapies for heart failure with preserved ejection fraction (HFpEF). Although in its infancy in cardiovascular diseases, the epigenetic-based therapy (“epidrugs”) is capturing the interest of physician community. In fact, an increasing number of controlled clinical trials is evaluating the putative beneficial effects of: 1) direct epigenetic-oriented drugs, eg, apabetalone, and 2) repurposed drugs with a possible indirect epigenetic interference, eg, metformin, statins, sodium glucose transporter inhibitors 2 (SGLT2i), and omega 3 polyunsaturated fatty acids (PUFAs) in both HFrEF and HFpEF, separately. Apabetalone is the first and unique direct epidrug tested in cardiovascular patients to date, and the BETonMACE trial has reported a reduction in first HF hospitalization (any EF value) and cardiovascular death in patients with type 2 diabetes and recent acute coronary syndrome, suggesting a possible role in secondary prevention. Patients with HFpEF seem to benefit from supplementation to the standard therapy with statins, metformin, and SGLT2i owing to their ability in reducing mortality. In contrast, the vasodilator hydralazine, with or without isosorbide dinitrate, did not provide beneficial effects. In HFrEF, metformin and SGLT2i could reduce the risk of incident HF and mortality in affected patients whereas clinical trials based on statins provided mixed results. Furthermore, PUFAs diet supplementation was significantly associated with reduced cardiovascular risk in both HFpEF and HFrEF. Future large trials will reveal whether direct and indirect epitherapy will remain a work in progress or become a useful way to customize the therapy in the real-world management of HFpEF and HFrEF. Our goal is to discuss the recent advancement in the epitherapy as a possible way to improve personalized therapy of HF

    The Viscosity Bound Conjecture and Hydrodynamics of M2-Brane Theory at Finite Chemical Potential

    Full text link
    Kovtun, Son and Starinets have conjectured that the viscosity to entropy density ratio η/s\eta/s is always bounded from below by a universal multiple of ℏ\hbar i.e., ℏ/(4πkB)\hbar/(4\pi k_{B}) for all forms of matter. Mysteriously, the proposed viscosity bound appears to be saturated in all computations done whenever a supergravity dual is available. We consider the near horizon limit of a stack of M2-branes in the grand canonical ensemble at finite R-charge densities, corresponding to non-zero angular momentum in the bulk. The corresponding four-dimensional R-charged black hole in Anti-de Sitter space provides a holographic dual in which various transport coefficients can be calculated. We find that the shear viscosity increases as soon as a background R-charge density is turned on. We numerically compute the few first corrections to the shear viscosity to entropy density ratio η/s\eta/s and surprisingly discover that up to fourth order all corrections originating from a non-zero chemical potential vanish, leaving the bound saturated. This is a sharp signal in favor of the saturation of the viscosity bound for event horizons even in the presence of some finite background field strength. We discuss implications of this observation for the conjectured bound.Comment: LaTeX, 26+1 Pages, 4 Figures, Version 2: references adde

    The shear viscosity of the non-commutative plasma

    Full text link
    We compute the shear viscosity of the non-commutative N=4 super Yang-Mills quantum field theory at strong coupling using the dual supergravity background. Special interest derives from the fact that the background presents an intrinsic anisotropy in space through the distinction of commutative and non-commutative directions. Despite this anisotropy the analysis exhibits the ubiquitous result \eta/s = 1/4\pi for two different shear channels. In order to derive this result, we show that the boundary energy momentum tensor must couple to the open string metric. As a byproduct we compute the renormalised holographic energy momentum tensor and show that it coincides with one in the commutative theory.Comment: 17 pages. v2: reference adde
    • …
    corecore