22 research outputs found

    Promising markers of CIMP+ colon tumors identified on the basis of TCGA data analysis

    Get PDF
    CIMP+ (CpG­Island Methylator Phenotype) tumors are characterized by dense methylation of promoter CpG islands of many genes at once and represent a separate group of malignant neoplasms of the colon. Despite the fact that the diagnostics of CIMP+ tumors has a significant prognostic value, an effective set of markers has not been developed yet. For the identification of CpG sites, the methylation level of which could be used to detect CIMP+ tumors, an analysis of expression and methylation profiles of 297 primary colon tumors and 38 histologically normal tissues paired to them, which are presented in the TCGA (The Cancer Genome Atlas) project database, was performed by us using the CrossHub tool created previously. We developed the scoring, which takes into account the methylation level of CpG sites, their location, and the expression level of the corresponding genes. It was revealed that the methylation status of CpG sites of the AMOTL1, ZNF43, ZNF134, and CHFR genes is a promising marker of CIMP+ tumors. Moreover, specific regions of promoters of these genes, the methylation level of which was associated with the examined phenotype, were identified. To verify the obtained data in independent sampling, first, the quantitative PCR was used to assess the relative mRNA level of the AMOTL1, ZNF43, ZNF134, and CHFR genes in 30 paired (tumor/histologically normal tissue) colon samples. For all the genes, a frequent (50–60 % of cases) and significant (2–30­fold) expression decrease was revealed. Then, the bisulfite conversion of DNA followed by cloning and sequencing was applied to examine the methylation status of CpG sites that were selected as the result of bioinformatics analysis. We observed a high methylation level (β­value = 0.3–0.9) of the CpG sites in the samples with simultaneous downregulation of all 4 genes and a low methylation level (β­value = 0.0–0.2) in the samples with the unchanged expression level of 4 genes and in histologically normal tissues. Thus, the methylation status of the CpG sites of promoter regions of the AMOTL1, ZNF43, ZNF134, and CHFR genes is a promising potential marker of CIMP+ colon tumors

    Pan-Cancer Analysis of TCGA Data Revealed Promising Reference Genes for qPCR Normalization

    Get PDF
    Quantitative PCR (qPCR) remains the most widely used technique for gene expression evaluation. Obtaining reliable data using this method requires reference genes (RGs) with stable mRNA level under experimental conditions. This issue is especially crucial in cancer studies because each tumor has a unique molecular portrait. The Cancer Genome Atlas (TCGA) project provides RNA-Seq data for thousands of samples corresponding to dozens of cancers and presents the basis for assessment of the suitability of genes as reference ones for qPCR data normalization. Using TCGA RNA-Seq data and previously developed CrossHub tool, we evaluated mRNA level of 32 traditionally used RGs in 12 cancer types, including those of lung, breast, prostate, kidney, and colon. We developed an 11-component scoring system for the assessment of gene expression stability. Among the 32 genes, PUM1 was one of the most stably expressed in the majority of examined cancers, whereas GAPDH, which is widely used as a RG, showed significant mRNA level alterations in more than a half of cases. For each of 12 cancer types, we suggested a pair of genes that are the most suitable for use as reference ones. These genes are characterized by high expression stability and absence of correlation between their mRNA levels. Next, the scoring system was expanded with several features of a gene: mutation rate, number of transcript isoforms and pseudogenes, participation in cancer-related processes on the basis of Gene Ontology, and mentions in PubMed-indexed articles. All the genes covered by RNA-Seq data in TCGA were analyzed using the expanded scoring system that allowed us to reveal novel promising RGs for each examined cancer type and identify several “universal” pan-cancer RG candidates, including SF3A1, CIAO1, and SFRS4. The choice of RGs is the basis for precise gene expression evaluation by qPCR. Here, we suggested optimal pairs of traditionally used RGs for 12 cancer types and identified novel promising RGs that demonstrate high expression stability and other features of reliable and convenient RGs (high expression level, low mutation rate, non-involvement in cancer-related processes, single transcript isoform, and absence of pseudogenes)

    Differential Impact of Random GC Tetrad Binding and Chromatin Events on Transcriptional Inhibition by Olivomycin A

    No full text
    Olivomycin A (OA), an antibiotic of the aureolic acid family, interferes with gene transcription upon forming complexes with GC-rich regions in the DNA minor groove. We demonstrate that the mechanism of transcriptional deregulation is not limited to OA interaction with GC-containing binding sites for transcription factors. Using electrophoretic mobility shift assays and DNAse I footprinting of cytomegalovirus (CMV) promoter fragments carrying OA-preferred GC tetrads (CMVwt), we showed OA binding specifically to GC islands. Replacement of G for A in these tetrads (CMVmut) abrogated OA binding. Furthermore, OA decreased RNA polymerase II (RNAPII) binding to the CMVwt promoter and inhibited the reporter gene expression. In line with the absence of OA binding sites in CMVmut DNA, the expression driven from this promoter was weakly sensitive to OA. In the endogenous genes OA decreased RNAPII on promoters and coding regions. In certain cases this phenomenon was concomitant with the increased histone 3 abundance. However, the sensitivity to OA did not correlate with GC patterns around transcription start sites, suggesting that certain GC stretches play unequal roles in OA-induced transcriptional perturbations. Thus, OA affects transcription via complex mechanisms in which GC tetranucleotide binding causes RNAPII/chromatin alterations differentially manifested in individual gene contexts

    A pseudoknot-compatible universal site is located in the large ribosomal RNA in the peptidyltransferase center

    Get PDF
    The RNA secondary structure is not confined to a system of the hairpins and can contain pseudoknots as well as topologically equivalent slipped-loop structure (SLS) conformations. A specific primary structure that directs folding to the pseudoknot or SLS is called SL-palindrome (SLP). Using a computer program for searching the SLP in the genomic sequences, 419 primary structures of large ribosomal RNAs from different kingdoms (prokaryota, eukaryota, archaebacteria) as well as plastids and mitochondria were analyzed. A universal site was found in the peptidyltransferase center (PTC) capable of folding to a pseudoknot of 48 nucleotides in length. Phylogenetic conservation of its helices (concurrent replacements with no violation of base pairing, covariation) has been demonstrated. We suggest the reversible folding-unfolding of the pseudoknot for certain stages of the ribosome functioning

    Deep Sequencing Revealed a CpG Methylation Pattern Associated With ALDH1L1 Suppression in Breast Cancer

    No full text
    Hypermethylation of promoter CpG islands is generally recognized epigenetic mechanism responsible for gene silencing in cancer. However, molecular details on how this epigenetic mark triggers the process of gene downregulation are still elusive. Here, we used deep bisulfite sequencing and qPCR analysis to investigate the pattern of CpG methylation of ALDH1L1 promoter region and its association with the gene expression level in 16 paired breast cancer (BC) samples of different clinical stages. Expression of ALDH1L1 gene was suppressed in all examined BC samples up to 200-fold, and average hypermethylation level of the promoter region correlated positively with ALDH1L1 downregulation. We determined the role of every individual CpG site within the ALDH1L1 promoter, including upstream untranscribed region, first untranslated exon, and the start of the first intron, in aberrant gene expression by correlation analysis. The search revealed CpG sites which methylation has the highest impact on intensity of gene transcription. The majority of such CpG sites are located in a compact region in the first intron of the ALDH1L1 gene. These results assist in unraveling of dynamic nature of CpG promoter hypermethylation as well as demonstrate the efficiency of deep bisulfite sequencing in search for novel epigenetic markers in cancer

    Discrimination between G/C Binding Sites by Olivomycin A Is Determined by Kinetics of the Drug-DNA Interaction

    No full text
    Olivomycin A (OA) exerts its cytotoxic potency due to binding to the minor groove of the G/C-rich DNA and interfering with replication and transcription. Screening of the complete set of tetranucleotide G/C sites by electrophoretic mobility gel shift assay (EMSA) revealed that the sites containing central GC or GG dinucleotides were able to bind OA, whereas the sites with the central CG dinucleotide were not. However, studies of equilibrium OA binding in solution by fluorescence, circular dichroism and isothermal titration calorimetry failed to confirm the sequence preference of OA, indicating instead a similar type of complex and comparable affinity of OA to all G/C binding sites. This discrepancy was resolved by kinetics analysis of the drug–DNA interaction: the dissociation rate significantly differed between SGCS, SGGS and SCGS sites (S stands for G or C), thereby explaining the disintegration of the complexes during EMSA. The functional relevance of the revealed differential kinetics of OA–DNA interaction was demonstrated in an in vitro transcription assay. These findings emphasize the crucial role of kinetics in the mechanism of OA action and provide an important approach to the screening of new drug candidates

    Slotbeschouwing

    No full text
    <p><b>Dependence of DNA binding affinity of compounds 1 (A) and 3 (B) on the ionic strength of solution.</b> DNA binding constants of <b>1</b> and <b>3</b> obtained in solutions that contained 5mM MgCl<sub>2</sub> (filled circles) and no MgCl<sub>2</sub> (open circles). Linear approximations shown by solid lines with the slope SK = ∂logK/∂log[KCl].</p

    Binding of compounds 1–3 to the pUC19 plasmid DNA monitored by electrophoretic mobility in 1% agarose gel.

    No full text
    <p>The plasmid was incubated with the compounds at indicated concentrations (μM) in BB-Mg buffer containing 5 mM MgCl<sub>2</sub> (A) or BB buffer (same buffer with no MgCl<sub>2</sub>) (B). Migration of the free compound is shown at the highest concentration (25 μM) for each drug (arrows). Bottom panels in A and B: electrophoresis with EtBr in the gel and in the running buffer.</p

    Changes of CD spectra of compound 3 upon binding to DNA.

    No full text
    <p>CD spectra of unbound compound <b>3</b> in the absence of DNA (open circles) and in complexes with DNA (filled circles) in BB-Mg (A) or BB (B). DNA concentration increased in the range 5–50 μM (bp), the concentration of <b>3</b> was 20 μM.</p
    corecore