2 research outputs found

    Interlaboratory comparison of methodologies for measuring the angle of incidence dependence of solar cells

    Get PDF
    The aim of this work is to compare angle of incidence (AOI) measurement setups for solar cells between laboratories with such capability. For the first time, we compare relative light transmission measurements among eight laboratories, whose measurement techniques include indoor and outdoor methods. We present the relative transmission measurements on three 156 mm x 156 mm crystalline-Si (c-Si) samples with different surface textures. The measurements are compared using the expanded uncertainties provided by each laboratory. Five of the eight labs showed an agreement better than ±2% to the weighted mean between AOIs from -75° to 70°. At AOIs of ±80° and ±85°, the same five labs showed a worst case deviation to the weighted mean of -3% to 5% and 0% to 18%, respectively. When measurement uncertainty is considered, the results show that measurements at the highest incidence angle of ±85° are problematic, as measurements from four out of the six labs reporting uncertainty were found non-comparable within their stated uncertainties. At 85° AOI a high to low range of up to 75% was observed between all eight laboratories

    Bottom-Up Nanofabrication of Supported Noble Metal Alloy Nanoparticle Arrays for Plasmonics

    Get PDF
    Mixing different elements at the nanoscale to obtain alloy nanostructures with fine-tuned physical and chemical properties offers appealing opportunities for nanotechnology and nanoscience. However, despite widespread successful application of alloy nanoparticles made by colloidal synthesis in heterogeneous catalysis, nanoalloy systems have been used very rarely in solid-state devices and nanoplasmonics-related applications. One reason is that such applications require integration in arrays on a surface with compelling demands on nanoparticle arrangement, uniformity in surface coverage, and optimization of the surface density. These cannot be fulfilled even using state-of-the-art self-assembly strategies of colloids. As a solution, we present here a generic bottom-up nanolithography-compatible fabrication approach for large-area arrays of alloy nanoparticles on surfaces. To illustrate the concept, we focus on Au-based binary and ternary alloy systems with Ag, Cu, and Pd, due to their high relevance for nanoplasmonics and complete miscibility, and characterize their optical properties. Moreover, as an example for the relevance of the obtained materials for integration in devices, we demonstrate the superior and hysteresis-free plasmonic hydrogen-sensing performance of the AuPd alloy nanoparticle system
    corecore