23 research outputs found

    Semi-Autonomous Control of an Exoskeleton using Computer Vision

    Get PDF

    Camera Calibration for Underwater 3D Reconstruction Based on Ray Tracing using Snell’s Law

    Get PDF

    Re-Identification of Zebrafish using Metric Learning

    Get PDF

    Pose Estimation from RGB Images of Highly Symmetric Objects using a Novel Multi-Pose Loss and Differential Rendering

    Get PDF
    We propose a novel multi-pose loss function to train a neural network for 6D pose estimation, using synthetic data and evaluating it on real images. Our loss is inspired by the VSD (Visible Surface Discrepancy) metric and relies on a differentiable renderer and CAD models. This novel multi-pose approach produces multiple weighted pose estimates to avoid getting stuck in local minima. Our method resolves pose ambiguities without using predefined symmetries. It is trained only on synthetic data. We test on real-world RGB images from the T-LESS dataset, containing highly symmetric objects common in industrial settings. We show that our solution can be used to replace the codebook in a state-of-the-art approach. So far, the codebook approach has had the shortest inference time in the field. Our approach reduces inference time further while a) avoiding discretization, b) requiring a much smaller memory footprint and c) improving pose recall

    A Shared Pose Regression Network for Pose Estimation of Objects from RGB Images

    Get PDF
    In this paper we propose a shared regression network to jointly estimate the pose of multiple objects, replacing multiple object-specific solutions. We demonstrate that this shared network can outperform other similar approaches that rely on multiple object-specific models by evaluating it on the TLESS dataset using the VSD (Visible Surface Discrepancy). Our approach offers a less complex solution, with fewer parameters, lower memory consumption and less training required. Furthermore, it inherently handles symmetric objects by using a depth-based loss during training and can predict in real-time. Finally, we show how our proposed pipeline can be used for fine-tuning a feature extractor jointly on all objects while training the shared pose regression network. This fine-tuning process improves the pose estimation performance

    A 4-DOF Upper Limb Exoskeleton for Physical Assistance: Design, Modeling, Control and Performance Evaluation

    Get PDF
    Wheelchair mounted upper limb exoskeletons offer an alternative way to support disabled individuals in their activities of daily living (ADL). Key challenges in exoskeleton technology include innovative mechanical design and implementation of a control method that can assure a safe and comfortable interaction between the human upper limb and exoskeleton. In this article, we present a mechanical design of a four degrees of freedom (DOF) wheelchair mounted upper limb exoskeleton. The design takes advantage of non-backdrivable mechanism that can hold the output position without energy consumption and provide assistance to the completely paralyzed users. Moreover, a PD-based trajectory tracking control is implemented to enhance the performance of human exoskeleton system for two different tasks. Preliminary results are provided to show the effectiveness and reliability of using the proposed design for physically disabled people

    Computer Vision-Based Adaptive Semi-Autonomous Control of an Upper Limb Exoskeleton for Individuals with Tetraplegia

    Get PDF
    We propose the use of computer vision for adaptive semi-autonomous control of an upper limb exoskeleton for assisting users with severe tetraplegia to increase independence and quality of life. A tongue-based interface was used together with the semi-autonomous control such that individuals with complete tetraplegia were able to use it despite being paralyzed from the neck down. The semi-autonomous control uses computer vision to detect nearby objects and estimate how to grasp them to assist the user in controlling the exoskeleton. Three control schemes were tested: non-autonomous (i.e., manual control using the tongue) control, semi-autonomous control with a fixed level of autonomy, and a semi-autonomous control with a confidence-based adaptive level of autonomy. Studies on experimental participants with and without tetraplegia were carried out. The control schemes were evaluated both in terms of their performance, such as the time and number of commands needed to complete a given task, as well as ratings from the users. The studies showed a clear and significant improvement in both performance and user ratings when using either of the semi-autonomous control schemes. The adaptive semi-autonomous control outperformed the fixed version in some scenarios, namely, in the more complex tasks and with users with more training in using the system

    Eyes-free tongue gesture and tongue joystick control of a five DOF upper-limb exoskeleton for severely disabled individuals

    Get PDF
    Spinal cord injury can leave the affected individual severely disabled with a low level of independence and quality of life. Assistive upper-limb exoskeletons are one of the solutions that can enable an individual with tetraplegia (paralysis in both arms and legs) to perform simple activities of daily living by mobilizing the arm. Providing an efficient user interface that can provide full continuous control of such a device—safely and intuitively—with multiple degrees of freedom (DOFs) still remains a challenge. In this study, a control interface for an assistive upper-limb exoskeleton with five DOFs based on an intraoral tongue-computer interface (ITCI) for individuals with tetraplegia was proposed. Furthermore, we evaluated eyes-free use of the ITCI for the first time and compared two tongue-operated control methods, one based on tongue gestures and the other based on dynamic virtual buttons and a joystick-like control. Ten able-bodied participants tongue controlled the exoskeleton for a drinking task with and without visual feedback on a screen in three experimental sessions. As a baseline, the participants performed the drinking task with a standard gamepad. The results showed that it was possible to control the exoskeleton with the tongue even without visual feedback and to perform the drinking task at 65.1% of the speed of the gamepad. In a clinical case study, an individual with tetraplegia further succeeded to fully control the exoskeleton and perform the drinking task only 5.6% slower than the able-bodied group. This study demonstrated the first single-modal control interface that can enable individuals with complete tetraplegia to fully and continuously control a five-DOF upper limb exoskeleton and perform a drinking task after only 2 h of training. The interface was used both with and without visual feedback

    User Based Development and Test of the EXOTIC Exoskeleton:Empowering Individuals with Tetraplegia Using a Compact, Versatile, 5-DoF Upper Limb Exoskeleton Controlled through Intelligent Semi-Automated Shared Tongue Control

    Get PDF
    This paper presents the EXOTIC- a novel assistive upper limb exoskeleton for individuals with complete functional tetraplegia that provides an unprecedented level of versatility and control. The current literature on exoskeletons mainly focuses on the basic technical aspects of exoskeleton design and control while the context in which these exoskeletons should function is less or not prioritized even though it poses important technical requirements. We considered all sources of design requirements, from the basic technical functions to the real-world practical application. The EXOTIC features: (1) a compact, safe, wheelchair-mountable, easy to don and doff exoskeleton capable of facilitating multiple highly desired activities of daily living for individuals with tetraplegia; (2) a semi-automated computer vision guidance system that can be enabled by the user when relevant; (3) a tongue control interface allowing for full, volitional, and continuous control over all possible motions of the exoskeleton. The EXOTIC was tested on ten able-bodied individuals and three users with tetraplegia caused by spinal cord injury. During the tests the EXOTIC succeeded in fully assisting tasks such as drinking and picking up snacks, even for users with complete functional tetraplegia and the need for a ventilator. The users confirmed the usability of the EXOTIC
    corecore