3,357 research outputs found

    Magnetoroton scattering by phonons in the fractional quantum Hall regime

    Full text link
    Motivated by recent phonon spectroscopy experiments in the fractional quantum Hall regime we consider processes in which thermally excited magnetoroton excitations are scattered by low energy phonons. We show that such scattering processes can never give rise to dissociation of magnetorotons into unbound charged quasiparticles as had been proposed previously. In addition we show that scattering of magnetorotons to longer wavelengths by phonon absorption is possible because of the shape of the magnetoroton dispersion curve and it is shown that there is a characteristic cross-over temperature above which the rate of energy transfer to the electron gas changes from an exponential (activated) to a power law dependence on the effective phonon temperature.Comment: LaTex document, 3 eps figures. submitted to Phys Rev

    Astrometric Discovery of GJ 164B

    Full text link
    We discovered a low-mass companion to the M-dwarf GJ 164 with the CCD-based imaging system of the Stellar Planet Survey (STEPS) astrometric program. The existence of GJ 164B was confirmed with Hubble Space Telescope NICMOS imaging observations. A high-dispersion spectral observation in V sets a lower limit of delta m> 2.2 mag between the two components of the system. Based upon our parallax value of 0.082 +/- 0.008, we derive the following orbital parameters: P = 2.04 +/- 0.03 y, a = 1.03 +/- 0.03 AU, and Mtotal = 0.265 +/- 0.020 MSun. The component masses are MA = 0.170 +/- 0.015 MSun and MB = 0.095 +/- 0.015 MSun. Based on its mass, colors, and spectral properties, GJ 164B has spectral type M6-8 V.Comment: pdf file 14 pages with 6 fig

    Comments on "The long-period Galactic Cepheid RS Puppis. I. A geometric distance from its light echoes"

    Full text link
    The luminous Galactic Cepheid RS Puppis is unique in being surrounded by a dust nebula illuminated by the variable light of the Cepheid. In a recent paper in this journal, Kervella et al. (2008) report a very precise geometric distance to RS Pup, based on measured phase lags of the light variations of individual knots in the reflection nebula. In this commentary, we examine the validity of the distance measurement, as well as the reality of the spatial structure of the nebula determined by Feast (2008) based upon the phase lags of the knots. {Kervella et al. assumed that the illuminated dust knots lie, on average, in the plane of the sky (otherwise it is not possible to derive a geometric distance from direct imaging of light echoes). We consider the biasing introduced by the high efficiency of forward scattering. We conclude that most of the knots are in fact likely to lie in front of the plane of the sky, thus invalidating the Kervella et al. result. We also show that the flat equatorial disk structure determined by Feast is unlikely; instead, the morphology of the nebula is more probably bipolar, with a significant tilt of its axis with respect to the plane of the sky. Although the Kervella et al. distance result is invalidated, we show that high-resolution polarimetric imaging has the potential to yield a valid geometric distance to this important Cepheid.Comment: 10 pages, 5 figures, 1 table; accepted by Astronomy & Astrophysic

    Detectability of dissipative motion in quantum vacuum via superradiance

    Get PDF
    We propose an experiment for generating and detecting vacuum-induced dissipative motion. A high frequency mechanical resonator driven in resonance is expected to dissipate energy in quantum vacuum via photon emission. The photons are stored in a high quality electromagnetic cavity and detected through their interaction with ultracold alkali-metal atoms prepared in an inverted population of hyperfine states. Superradiant amplification of the generated photons results in a detectable radio-frequency signal temporally distinguishable from the expected background.Comment: 4 pages, 2 figure

    Oscillations in Quantum Entanglement During Rescattering

    Full text link
    We study the time evolution of quantum entanglement between an electron and its parent ion during the rescattering due to a strong few-cycle laser pulse. Based on a simple one-dimensional model, we compute the Neumann entropy during the process for several values of the carrier-envelope phase. The local maxima of the oscillations in the Neumann entropy coincide with the zero crossings of the electric field of the laser pulse. We employ the Wigner function to qualitatively explain the quantum dynamics of rescattering in the phase space.Comment: 2 page

    Overall Memory Impairment Identification with Mathematical Modeling of the CVLT-II Learning Curve in Multiple Sclerosis

    Get PDF
    The CVLT-II provides standardized scores for each of the List A five learning trials, so that the clinician can compare the patient's raw trials 1–5 scores with standardized ones. However, frequently, a patient's raw scores fluctuate making a proper interpretation difficult. The CVLT-II does not offer any other methods for classifying a patient's learning and memory status on the background of the learning curve. The main objective of this research is to illustrate that discriminant analysis provides an accurate assessment of the learning curve, if suitable predictor variables are selected. Normal controls were ninety-eight healthy volunteers (78 females and 20 males). A group of MS patients included 365 patients (266 females and 99 males) with clinically defined multiple sclerosis. We show that the best predictor variables are coefficients B3 and B4 of our mathematical model B3 ∗ exp(−B2  ∗  (X − 1)) + B4  ∗  (1 − exp(−B2  ∗  (X − 1))) because discriminant functions, calculated separately for B3 and B4, allow nearly 100% correct classification. These predictors allow identification of separate impairment of readiness to learn or ability to learn, or both

    Discussion of Recent Decisions

    Get PDF

    Collective states in highly symmetric atomic configurations, and single-photon traps

    Full text link
    Abbreviated Abstract: We study correlated states in a circular and linear-chain configuration of identical two-level atoms containing the energy of a single quasi-resonant photon in the form of a collective excitation, where the collective behaviour is mediated by exchange of transverse photons between the atoms. For a circular configuration of atoms the effective Hamiltonian on the radiationless subspace of the system can be diagonalized analytically. In this case, the radiationless energy eigenstates carry a ZN\mathbb{Z}_N quantum number p=0,1,...,Np=0,1, ..., N which is analogous to the angular momentum quantum number l=0,1,...l= 0, 1, ..., carried by particles propagating in a central potential, such as a hydrogen-like system. Just as the hydrogen s-states are the only electronic wave functions which can occupy the central region of the Coulomb potential, the quasi-particle corresponding to a collective excitation of the circular atomic sample can occupy the central atom only for vanishing ZN\mathbb{Z}_N quantum number pp. For large numbers of atoms in a maximally subradiant state, a critical interatomic distance of λ/2\lambda/2 emerges both in the linear-chain and the circular configuration of atoms. The spontaneous decay rate of the linear configuration exhibits a jump-like "critical" behaviour for next-neighbour distances close to a half-wavelength. Furthermore, both the linear-chain and the circular configuration exhibit exponential photon trapping once the next-neighbour distance becomes less than a half-wavelength, with the suppression of spontaneous decay being particularly pronounced in the circular system. In this way, circular configurations containing sufficiently many atoms may be natural candidates for {\it single-photon traps}.Comment: Invited contribution to "Xth International Conference on Quantum Optics ICQO 2004" in Minsk, Belarus. To be published in Optics and Spectroscop
    corecore