6 research outputs found

    Cosmological measurements, time and observables in (2+1)-dimensional gravity

    Full text link
    We investigate the relation between measurements and the physical observables for vacuum spacetimes with compact spatial surfaces in (2+1)-gravity with vanishing cosmological constant. By considering an observer who emits lightrays that return to him at a later time, we obtain explicit expressions for several measurable quantities as functions on the physical phase space of the theory: the eigentime elapsed between the emission of a lightray and its return to the observer, the angles between the directions into which the light has to be emitted to return to the observer and the relative frequencies of the lightrays at their emission and return. This provides a framework in which conceptual questions about time, observables and measurements can be addressed. We analyse the properties of these measurements and their geometrical interpretation and show how they allow an observer to determine the values of the Wilson loop observables that parametrise the physical phase space of (2+1)-gravity. We discuss the role of time in the theory and demonstrate that the specification of an observer with respect to the spacetime's geometry amounts to a gauge fixing procedure yielding Dirac observables.Comment: 38 pages, 11 eps figures, typos corrected, references update

    Fuchsian convex bodies: basics of Brunn--Minkowski theory

    Full text link
    The hyperbolic space \H^d can be defined as a pseudo-sphere in the (d+1)(d+1) Minkowski space-time. In this paper, a Fuchsian group Γ\Gamma is a group of linear isometries of the Minkowski space such that \H^d/\Gamma is a compact manifold. We introduce Fuchsian convex bodies, which are closed convex sets in Minkowski space, globally invariant for the action of a Fuchsian group. A volume can be associated to each Fuchsian convex body, and, if the group is fixed, Minkowski addition behaves well. Then Fuchsian convex bodies can be studied in the same manner as convex bodies of Euclidean space in the classical Brunn--Minkowski theory. For example, support functions can be defined, as functions on a compact hyperbolic manifold instead of the sphere. The main result is the convexity of the associated volume (it is log concave in the classical setting). This implies analogs of Alexandrov--Fenchel and Brunn--Minkowski inequalities. Here the inequalities are reversed

    Notes on a paper of Mess

    Full text link
    These notes are a companion to the article "Lorentz spacetimes of constant curvature" by Geoffrey Mess, which was first written in 1990 but never published. Mess' paper will appear together with these notes in a forthcoming issue of Geometriae Dedicata.Comment: 26 page
    corecore