735 research outputs found

    Avoiding inconsistencies over time and tracking difficulties in Applied Biosystems AB1700™/Panther™ probe-to-gene annotations

    Get PDF
    BACKGROUND: Significant inconsistencies between probe-to-gene annotations between different releases of probe set identifiers by commercial microarray platform solutions have been reported. Such inconsistencies lead to misleading or ambiguous interpretation of published gene expression results. RESULTS: We report here similar inconsistencies in the probe-to-gene annotation of Applied Biosystems AB1700 data, demonstrating that this is not an isolated concern. Moreover, the online information source PANTHER does not provide information required to track such inconsistencies, hence, even correctly annotated datasets, when resubmitted after PANTHER was updated to a new probe-to-gene annotation release, will generate differing results without any feedback on the origin of the change. CONCLUSION: The importance of unequivocal annotation of microarray experiments can not be underestimated. Inconsistencies greatly diminish the usefulness of the technology. Novel methods in the analysis of transcriptome profiles often rely on large disparate datasets stemming from multiple sources. The predictive and analytic power of such approaches rapidly diminishes if only least-common subsets can be used for analysis. We present here the information that needs to be provided together with the raw AB1700 data, and the information required together with the biologic interpretation of such data to avoid inconsistencies and tracking difficulties

    Feature context-dependency and complexity-reduction in probability landscapes for integrative genomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The question of how to integrate heterogeneous sources of biological information into a coherent framework that allows the gene regulatory code in eukaryotes to be systematically investigated is one of the major challenges faced by systems biology. Probability landscapes, which include as reference set the probabilistic representation of the genomic sequence, have been proposed as a possible approach to the systematic discovery and analysis of correlations amongst initially heterogeneous and un-relatable descriptions and genome-wide measurements. Much of the available experimental sequence and genome activity information is <it>de facto</it>, but not necessarily obviously, context dependent. Furthermore, the context dependency of the relevant information is itself dependent on the biological question addressed. It is hence necessary to develop a systematic way of discovering the context-dependency of functional genomics information in a flexible, question-dependent manner.</p> <p>Results</p> <p>We demonstrate here how feature context-dependency can be systematically investigated using probability landscapes. Furthermore, we show how different feature probability profiles can be conditionally collapsed to reduce the computational and formal, mathematical complexity of probability landscapes. Interestingly, the possibility of complexity reduction can be linked directly to the analysis of context-dependency.</p> <p>Conclusion</p> <p>These two advances in our understanding of the properties of probability landscapes not only simplify subsequent cross-correlation analysis in hypothesis-driven model building and testing, but also provide additional insights into the biological gene regulatory problems studied. Furthermore, insights into the nature of individual features and a classification of features according to their minimal context-dependency are achieved. The formal structure proposed contributes to a concrete and tangible basis for attempting to formulate novel mathematical structures for describing gene regulation in eukaryotes on a genome-wide scale.</p

    Determining the impact of alternative splicing events on transcriptome dynamics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The complete sequencing of the human genome and its subsequent analysis revealed a predominant role for alternative splicing in the generation of proteome diversity. Splice switching oligonucleotides (SSOs) are a powerful and specific tool to experimentally control alternative splicing of endogenous messenger RNAs in living cells. SSOs also have therapeutic potential to treat diseases that are caused by aberrant splicing. The assignment of biological roles to alternative splicing events of currently unknown function promises to provide a largely untapped source of potential new therapeutic targets. Here we have developed a protocol that combines high sensitivity microarrays with the transfection of SSOs to monitor global changes in gene expression downstream of alternate, endogenous splice events.</p> <p>Results</p> <p>When applied to a well-characterized splicing event in the Bcl-x gene, the application of high sensitivity microarrays revealed a link between the induction of the Bcl-xS isoform and the repression of genes involved in protein synthesis.</p> <p>Conclusion</p> <p>The strategy introduced herein provides a useful approach to define the biological impact of any given alternative splicing event on global gene expression patterns. Furthermore, our data provide the first link between Bcl-xS expression and the repression of ribosomal protein gene expression.</p

    TAF6δ Controls Apoptosis and Gene Expression in the Absence of p53

    Get PDF
    BACKGROUND: Life and death decisions of metazoan cells hinge on the balance between the expression of pro- versus anti-apoptotic gene products. The general RNA polymerase II transcription factor, TFIID, plays a central role in the regulation of gene expression through its core promoter recognition and co-activator functions. The core TFIID subunit TAF6 acts in vitro as an essential co-activator of transcription for the p53 tumor suppressor protein. We previously identified a splice variant of TAF6, termed TAF6delta that can be induced during apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the impact of TAF6delta on cell death and gene expression, we have employed modified antisense oligonucleotides to enforce expression of endogenous TAF6delta. The induction of endogenous TAF6delta triggered apoptosis in tumor cell lines, including cells devoid of p53. Microarray experiments revealed that TAF6delta activates gene expression independently of cellular p53 status. CONCLUSIONS: Our data define TAF6delta as a pivotal node in a signaling pathway that controls gene expression programs and apoptosis in the absence of p53

    SUMO-1 regulates the conformational dynamics of Thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human thymine-DNA glycosylase (TDG) plays a dual role in base excision repair of G:U/T mismatches and in transcription. Regulation of TDG activity by SUMO-1 conjugation was shown to act on both functions. Furthermore, TDG can interact with SUMO-1 in a non-covalent manner.</p> <p>Results</p> <p>Using NMR spectroscopy we have determined distinct conformational changes in TDG upon either covalent sumoylation on lysine 330 or intermolecular SUMO-1 binding through a unique SUMO-binding motif (SBM) localized in the C-terminal region of TDG. The non-covalent SUMO-1 binding induces a conformational change of the TDG amino-terminal regulatory domain (RD). Such conformational dynamics do not exist with covalent SUMO-1 attachment and could potentially play a broader role in the regulation of TDG functions for instance during transcription. Both covalent and non-covalent processes activate TDG G:U repair similarly. Surprisingly, despite a dissociation of the SBM/SUMO-1 complex in presence of a DNA substrate, SUMO-1 preserves its ability to stimulate TDG activity indicating that the non-covalent interactions are not directly involved in the regulation of TDG activity. SUMO-1 instead acts, as demonstrated here, indirectly by competing with the regulatory domain of TDG for DNA binding.</p> <p>Conclusions</p> <p>SUMO-1 increases the enzymatic turnover of TDG by overcoming the product-inhibition of TDG on apurinic sites. The mechanism involves a competitive DNA binding activity of SUMO-1 towards the regulatory domain of TDG. This mechanism might be a general feature of SUMO-1 regulation of other DNA-bound factors such as transcription regulatory proteins.</p

    A chemokine gene expression signature derived from meta-analysis predicts the pathogenicity of viral respiratory infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During respiratory viral infections host injury occurs due in part to inappropriate host responses. In this study we sought to uncover the host transcriptional responses underlying differences between high- and low-pathogenic infections.</p> <p>Results</p> <p>From a compendium of 12 studies that included responses to influenza A subtype H5N1, reconstructed 1918 influenza A virus, and SARS coronavirus, we used meta-analysis to derive multiple gene expression signatures. We compared these signatures by their capacity to segregate biological conditions by pathogenicity and predict pathogenicity in a test data set. The highest-performing signature was expressed as a continuum in low-, medium-, and high-pathogenicity samples, suggesting a direct, analog relationship between expression and pathogenicity. This signature comprised 57 genes including a subnetwork of chemokines, implicating dysregulated cell recruitment in injury.</p> <p>Conclusions</p> <p>Highly pathogenic viruses elicit expression of many of the same key genes as lower pathogenic viruses but to a higher degree. This increased degree of expression may result in the uncontrolled co-localization of inflammatory cell types and lead to irreversible host damage.</p

    ASB2 is an Elongin BC-interacting protein that can assemble with Cullin 5 and Rbx1 to reconstitute an E3 ubiquitin ligase complex.

    Get PDF
    International audience; The ankyrin repeat-containing protein with a suppressor of cytokine signaling box-2 (ASB2) gene was identified as a retinoic acid-response gene and a target of the promyelocytic leukemia-retinoic acid receptor-alpha oncogenic protein characteristic of acute promyelocytic leukemia. Expression of ASB2 in myeloid leukemia cells inhibits growth and promotes commitment, recapitulating an early step known to be critical for differentiation. Here we show that ASB2, by interacting with the Elongin BC complex, can assemble with Cullin5.Rbx1 to form an E3 ubiquitin ligase complex that stimulates polyubiquitination by the E2 ubiquitin-conjugating enzyme Ubc5. This is a first indication that a member of the ASB protein family, ASB2, is a subunit of an ECS (Elongin C-Cullin-SOCS box)-type E3 ubiquitin ligase complex. Altogether, our results strongly suggest that ASB2 targets specific proteins to destruction by the proteasome in leukemia cells that have been induced to differentiate

    Tracing the first steps of American sturgeon pioneers in Europe

    Get PDF
    Background: A Baltic population of Atlantic sturgeon was founded ~1,200 years ago by migrants from North America, but after centuries of persistence, the population was extirpated in the 1960s, mainly as a result of over-harvest and habitat alterations. As there are four genetically distinct groups of Atlantic sturgeon inhabiting North American rivers today, we investigated the genetic provenance of the historic Baltic population by ancient DNA analyses using mitochondrial and nuclear markers. Results: The phylogeographic signal obtained from multilocus microsatellite DNA genotypes and mitochondrial DNA control region haplotypes, when compared to existing baseline datasets from extant populations, allowed for the identification of the region-of-origin of the North American Atlantic sturgeon founders. Moreover, statistical and simulation analyses of the multilocus genotypes allowed for the calculation of the effective number of individuals that originally founded the European population of Atlantic sturgeon. Our findings suggest that the Baltic population of A. oxyrinchus descended from a relatively small number of founders originating from the northern extent of the species' range in North America. Conclusion: These results demonstrate that the most northerly distributed North American A. oxyrinchus colonized the Baltic Sea ~1,200 years ago, suggesting that Canadian specimens should be the primary source of broodstock used for restoration in Baltic rivers. This study illustrates the great potential of patterns obtained from ancient DNA to identify population-of-origin to investigate historic genotype structure of extinct populations

    TAF6δ orchestrates an apoptotic transcriptome profile and interacts functionally with p53

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TFIID is a multiprotein complex that plays a pivotal role in the regulation of RNA polymerase II (Pol II) transcription owing to its core promoter recognition and co-activator functions. TAF6 is a core TFIID subunit whose splice variants include the major TAF6α isoform that is ubiquitously expressed, and the inducible TAF6δ. In contrast to TAF6α, TAF6δ is a pro-apoptotic isoform with a 10 amino acid deletion in its histone fold domain that abolishes its interaction with TAF9. TAF6δ expression can dictate life versus death decisions of human cells.</p> <p>Results</p> <p>Here we define the impact of endogenous TAF6δ expression on the global transcriptome landscape. TAF6δ was found to orchestrate a transcription profile that included statistically significant enrichment of genes of apoptotic function. Interestingly, gene expression patterns controlled by TAF6δ share similarities with, but are not equivalent to, those reported to change following TAF9 and/or TAF9b depletion. Finally, because TAF6δ regulates certain p53 target genes, we tested and demonstrated a physical and functional interaction between TAF6δ and p53.</p> <p>Conclusion</p> <p>Together our data define a TAF6δ-driven apoptotic gene expression program and show crosstalk between the p53 and TAF6δ pathways.</p
    corecore