28 research outputs found

    Effect of Network Architecture on Synchronization and Entrainment Properties of the Circadian Oscillations in the Suprachiasmatic Nucleus

    Get PDF
    In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus constitutes the central circadian pacemaker. The SCN receives light signals from the retina and controls peripheral circadian clocks (located in the cortex, the pineal gland, the liver, the kidney, the heart, etc.). This hierarchical organization of the circadian system ensures the proper timing of physiological processes. In each SCN neuron, interconnected transcriptional and translational feedback loops enable the circadian expression of the clock genes. Although all the neurons have the same genotype, the oscillations of individual cells are highly heterogeneous in dispersed cell culture: many cells present damped oscillations and the period of the oscillations varies from cell to cell. In addition, the neurotransmitters that ensure the intercellular coupling, and thereby the synchronization of the cellular rhythms, differ between the two main regions of the SCN. In this work, a mathematical model that accounts for this heterogeneous organization of the SCN is presented and used to study the implication of the SCN network topology on synchronization and entrainment properties. The results show that oscillations with larger amplitude can be obtained with scale-free networks, in contrast to random and local connections. Networks with the small-world property such as the scale-free networks used in this work can adapt faster to a delay or advance in the light/dark cycle (jet lag). Interestingly a certain level of cellular heterogeneity is not detrimental to synchronization performances, but on the contrary helps resynchronization after jet lag. When coupling two networks with different topologies that mimic the two regions of the SCN, efficient filtering of pulse-like perturbations in the entrainment pattern is observed. These results suggest that the complex and heterogeneous architecture of the SCN decreases the sensitivity of the network to short entrainment perturbations while, at the same time, improving its adaptation abilities to long term changes

    CRTC Potentiates Light-independent timeless Transcription to Sustain Circadian Rhythms in Drosophila

    Get PDF
    Light is one of the strongest environmental time cues for entraining endogenous circadian rhythms. Emerging evidence indicates that CREB-regulated transcription co-activator 1 (CRTC1) is a key player in this pathway, stimulating light-induced Period1 (Per1) transcription in mammalian clocks. Here, we demonstrate a light-independent role of Drosophila CRTC in sustaining circadian behaviors. Genomic deletion of the crtc locus causes long but poor locomotor rhythms in constant darkness. Overexpression or RNA interference-mediated depletion of CRTC in circadian pacemaker neurons similarly impairs the free-running behavioral rhythms, implying that Drosophila clocks are sensitive to the dosage of CRTC. The crtc null mutation delays the overall phase of circadian gene expression yet it remarkably dampens light-independent oscillations of TIMELESS (TIM) proteins in the clock neurons. In fact, CRTC overexpression enhances CLOCK/CYCLE (CLK/CYC)-activated transcription from tim but not per promoter in clock-less S2 cells whereas CRTC depletion suppresses it. Consistently, TIM overexpression partially but significantly rescues the behavioral rhythms in crtc mutants. Taken together, our data suggest that CRTC is a novel co-activator for the CLK/CYC-activated tim transcription to coordinate molecular rhythms with circadian behaviors over a 24-hour time-scale. We thus propose that CRTC-dependent clock mechanisms have co-evolved with selective clock genes among different species.ope

    Spectrum and Frequency of SLC26A4 Mutations Among Czech Patients with Early Hearing Loss with and without Enlarged Vestibular Aqueduct (EVA)

    No full text
    Mutations in SLC26A4 cause Pendred syndrome (PS) \u2013 hearing loss with goitre \u2013 or DFNB4 \u2013 non-syndromic hearing loss (NSHL) with inner ear abnormalities such as Enlarged Vestibular Aqueduct (EVA) or Mondini Dysplasia (MD). We tested 303 unrelated Czech patients with early hearing loss (298 with NSHL and 5 with PS), all GJB2-negative, for SLC26A4 mutations and evaluated their clinical and radiological phenotype. Among 115 available HRCT/MRI scans we detected three MD (2.6%), three Mondini-like affections (2.6%), 16 EVA (13 bilateral \u2013 19.2% and 15.6% respectively) and 61 EVA/MD-negative scans (73.4%). We found mutation(s) in 26 patients (8.6%) and biallelic mutations in eight patients (2.7%) out of 303 tested. In 18 of 26 (69%) patients, no second mutation could be detected even using MLPA. The spectrum of SLC26A4 mutations in Czech patients is broad without any prevalent mutation. We detected 21 different mutations (four novel). The most frequent mutations were p.Val138Phe and p.Leu445Trp (18% and 8.9% of pathogenic alleles respectively). Among 13 patients with bilateral EVA, six patients (50%) carry biallelic mutations. In EVA -negative patients no biallelic mutations were found but 4.9% had monoallelic mutations. SLC26A4 mutations are present mostly in patients with EVA/MD and/or progressive HL and those with affected siblings

    Modification of yttrium alkoxides: ÎČ-Ketoesterate-substituted yttrium alkoxo/hydroxo/oxo clusters

    Get PDF
    Reaction of Y5O(OiPr)13 (“yttrium iso-propoxide”) with one molar equivalent of isopropyl acetoacetate (iprac) per Y resulted in the formation of Y9O(OH)9(OiPr)8(iprac)8, a rare example of an yttrium alkoxo/hydroxo/oxo cluster. Reaction in a 1:3 molar ratio gave Y4(OH)2(iprac)10 and Y6(OH)6(iprac)12 instead. A fourth cluster, Y9O(OH)9(iprac)16, structurally closely related to Y9O(OH)9(OiPr)8(iprac)8, was obtained upon recrystallization of Y4(OH)2(iprac)10 from CDCl3

    Additional file 1: Table S1. of Molecular profile of 5-fluorouracil pathway genes in colorectal carcinoma

    No full text
    Lists TaqMan Gene Expression Assays used in the study. Table S2 shows sequence of primers and PCR conditions used for promoter CpG methylation profiling. Table S3 shows results of stage-adjusted Cox regression of associations between transcript levels and DFI of colorectal cancer patients from the combined testing and validation I sets. Figure S1 depicts 5-Fluorouracil pathway gene expression levels in the studied sets of colorectal cancer patients. Figure S2 shows results of analysis of associations between transcript levels and disease-free survival of colorectal cancer patients from the validation set I. Figure S3 shows results of analysis of associations between transcript levels and disease-free survival of colorectal cancer patients from the testing set. Figure S4 shows results of analysis of associations between transcript levels and disease-free survival of colorectal cancer patients from the combined testing and validation I set. Figure S5 shows results of analysis of associations between transcript levels and disease-free survival of 5-fluorouracil-treated colorectal cancer patients from the combined testing and validation I set. Figure S6 shows results of analysis of associations between transcript levels and disease-free survival of untreated colorectal cancer patients from the validation I set. Figure S7 shows results of analysis of associations between UPB1 methylation levels and disease-free survival of colorectal cancer patients. Figure S8 shows analysis of association of RRM2 expression with disease-free survival of colorectal cancer patients based on publicly available GEO database. Figure S9 shows analysis of methylation profiles of 5-FU pathway genes in human colorectal tumor (red boxes) and mucosa (green boxes) tissues from publicly available MethHC database. (DOC 1916 kb
    corecore