12,649 research outputs found

    Multiple-Scale Analysis of the Quantum Anharmonic Oscillator

    Get PDF
    Conventional weak-coupling perturbation theory suffers from problems that arise from resonant coupling of successive orders in the perturbation series. Multiple-scale perturbation theory avoids such problems by implicitly performing an infinite reordering and resummation of the conventional perturbation series. Multiple-scale analysis provides a good description of the classical anharmonic oscillator. Here, it is extended to study the Heisenberg operator equations of motion for the quantum anharmonic oscillator. The analysis yields a system of nonlinear operator differential equations, which is solved exactly. The solution provides an operator mass renormalization of the theory.Comment: 12 pages, Revtex, no figures, available through anonymous ftp from ftp://euclid.tp.ph.ic.ac.uk/papers/ or on WWW at http://euclid.tp.ph.ic.ac.uk/Papers/papers_95-6_.htm

    Vector Casimir effect for a D-dimensional sphere

    Get PDF
    The Casimir energy or stress due to modes in a D-dimensional volume subject to TM (mixed) boundary conditions on a bounding spherical surface is calculated. Both interior and exterior modes are included. Together with earlier results found for scalar modes (TE modes), this gives the Casimir effect for fluctuating ``electromagnetic'' (vector) fields inside and outside a spherical shell. Known results for three dimensions, first found by Boyer, are reproduced. Qualitatively, the results for TM modes are similar to those for scalar modes: Poles occur in the stress at positive even dimensions, and cusps (logarithmic singularities) occur for integer dimensions D1D\le1. Particular attention is given the interesting case of D=2.Comment: 20 pages, 1 figure, REVTe

    Scalar Quantum Field Theory with Cubic Interaction

    Full text link
    In this paper it is shown that an i phi^3 field theory is a physically acceptable field theory model (the spectrum is positive and the theory is unitary). The demonstration rests on the perturbative construction of a linear operator C, which is needed to define the Hilbert space inner product. The C operator is a new, time-independent observable in PT-symmetric quantum field theory.Comment: Corrected expressions in equations (20) and (21

    Harmonic oscillator well with a screened Coulombic core is quasi-exactly solvable

    Full text link
    In the quantization scheme which weakens the hermiticity of a Hamiltonian to its mere PT invariance the superposition V(x) = x^2+ Ze^2/x of the harmonic and Coulomb potentials is defined at the purely imaginary effective charges (Ze^2=if) and regularized by a purely imaginary shift of x. This model is quasi-exactly solvable: We show that at each excited, (N+1)-st harmonic-oscillator energy E=2N+3 there exists not only the well known harmonic oscillator bound state (at the vanishing charge f=0) but also a normalizable (N+1)-plet of the further elementary Sturmian eigenstates \psi_n(x) at eigencharges f=f_n > 0, n = 0, 1, ..., N. Beyond the first few smallest multiplicities N we recommend their perturbative construction.Comment: 13 pages, Latex file, to appear in J. Phys. A: Math. Ge

    PT Symmetry as a Generalization of Hermiticity

    Full text link
    The Hilbert space in PT-symmetric quantum mechanics is formulated as a linear vector space with a dynamic inner product. The most general PT-symmetric matrix Hamiltonians are constructed for 2*2 and 3*3 cases. In the former case, the PT-symmetric Hamiltonian represents the most general matrix Hamiltonian with a real spectrum. In both cases, Hermitian matrices are shown to be special cases of PT-symmetric matrices. This finding confirms and strengthens the early belief that the PT-symmetric quantum mechanics is a generalization of the conventional Hermitian quantum mechanics.Comment: 13 page

    Does the complex deformation of the Riemann equation exhibit shocks?

    Full text link
    The Riemann equation ut+uux=0u_t+uu_x=0, which describes a one-dimensional accelerationless perfect fluid, possesses solutions that typically develop shocks in a finite time. This equation is \cP\cT symmetric. A one-parameter \cP\cT-invariant complex deformation of this equation, utiu(iux)ϵ=0u_t-iu(iu_x)^\epsilon= 0 (ϵ\epsilon real), is solved exactly using the method of characteristic strips, and it is shown that for real initial conditions, shocks cannot develop unless ϵ\epsilon is an odd integer.Comment: latex, 8 page

    PT-symmetry breaking in complex nonlinear wave equations and their deformations

    Get PDF
    We investigate complex versions of the Korteweg-deVries equations and an Ito type nonlinear system with two coupled nonlinear fields. We systematically construct rational, trigonometric/hyperbolic, elliptic and soliton solutions for these models and focus in particular on physically feasible systems, that is those with real energies. The reality of the energy is usually attributed to different realisations of an antilinear symmetry, as for instance PT-symmetry. It is shown that the symmetry can be spontaneously broken in two alternative ways either by specific choices of the domain or by manipulating the parameters in the solutions of the model, thus leading to complex energies. Surprisingly the reality of the energies can be regained in some cases by a further breaking of the symmetry on the level of the Hamiltonian. In many examples some of the fixed points in the complex solution for the field undergo a Hopf bifurcation in the PT-symmetry breaking process. By employing several different variants of the symmetries we propose many classes of new invariant extensions of these models and study their properties. The reduction of some of these models yields complex quantum mechanical models previously studied.Comment: 50 pages, 39 figures (compressed in order to comply with arXiv policy; higher resolutions maybe obtained from the authors upon request

    Fission modes of 256Fm and 258Fm in a microscopic approach

    Full text link
    A static microscopic study of potential-energy surfaces within the Skyrme-Hartree-Fock-plus-BCS model is carried out for the 256Fm and 258Fm isotopes with the goal of deducing some properties of spontaneous fission. The calculated fission modes are found to be in agreement with the experimentaly observed asymmetric-to-symmetric transition in the fragment-mass distributions and with the high- and low-total-kinetic-energy modes experimentally observed in 258Fm. Most of the results are similar to those obtained in macroscopic-microscopic models as well as in recent Hartree-Fock-Bogolyubov calculations with the Gogny interaction, with a few differences in their interpretations. In particular an alternative explanation is proposed for the low-energy fission mode of 258Fm.Comment: 14 pages, 11 figures, 3 tables, submitted to Phys. Rev.

    Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals

    Full text link
    We calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 <= Z <= 104 and 144 <= N <= 156, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each within two different parameter sets. A comparative analysis of the results obtained for odd-even mass staggerings, quasiparticle spectra, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using the EDF modellingComment: 43 LaTeX pages, 14 figures, accepted in Nuclear Physics A, Special Issue on Superheavy Element
    corecore