225 research outputs found

    On Online Labeling with Polynomially Many Labels

    Full text link
    In the online labeling problem with parameters n and m we are presented with a sequence of n keys from a totally ordered universe U and must assign each arriving key a label from the label set {1,2,...,m} so that the order of labels (strictly) respects the ordering on U. As new keys arrive it may be necessary to change the labels of some items; such changes may be done at any time at unit cost for each change. The goal is to minimize the total cost. An alternative formulation of this problem is the file maintenance problem, in which the items, instead of being labeled, are maintained in sorted order in an array of length m, and we pay unit cost for moving an item. For the case m=cn for constant c>1, there are known algorithms that use at most O(n log(n)^2) relabelings in total [Itai, Konheim, Rodeh, 1981], and it was shown recently that this is asymptotically optimal [Bul\'anek, Kouck\'y, Saks, 2012]. For the case of m={\Theta}(n^C) for C>1, algorithms are known that use O(n log n) relabelings. A matching lower bound was claimed in [Dietz, Seiferas, Zhang, 2004]. That proof involved two distinct steps: a lower bound for a problem they call prefix bucketing and a reduction from prefix bucketing to online labeling. The reduction seems to be incorrect, leaving a (seemingly significant) gap in the proof. In this paper we close the gap by presenting a correct reduction to prefix bucketing. Furthermore we give a simplified and improved analysis of the prefix bucketing lower bound. This improvement allows us to extend the lower bounds for online labeling to the case where the number m of labels is superpolynomial in n. In particular, for superpolynomial m we get an asymptotically optimal lower bound {\Omega}((n log n) / (log log m - log log n)).Comment: 15 pages, Presented at European Symposium on Algorithms 201

    The Generalized PT-Symmetric Sinh-Gordon Potential Solvable within Quantum Hamilton-Jacobi Formalism

    Full text link
    The generalized Sinh-Gordon potential is solved within quantum Hamiltonian Jacobi approach in the framework of PT symmetry. The quasi exact solutions of energy eigenvalues and eigenfunctions of the generalized Sinh-Gordon potential are found for n=0,1 states.Comment: 10 pages appear to in IJT

    A kinetic approach to eta' production from a CP-odd phase

    Full text link
    The production of (eta,eta')- mesons during the decay of a CP-odd phase is studied within an evolution operator approach. We derive a quantum kinetic equation starting from the Witten-DiVecchia-Veneziano Lagrangian for pseudoscalar mesons containing a U_A(1) symmetry breaking term. The non-linear vacuum mean field for the flavour singlet pseudoscalar meson is treated as a classical, self-interacting background field with fluctuations assumed to be small. The numerical solution provides the time evolution of momentum distribution function of produced eta'- mesons after a quench at the deconfinement phase transition. We show that the time evolution of the momentum distribution of the produced mesons depend strongly on the shape of the effective potential at the end of the quench, exhibiting either parametric or tachyonic resonances. Quantum statistical effects are essential and lead to a pronounced Bose enhancement of the low momentum states.Comment: 10 pages, latex, epsfig, 6 figure

    Zitterbewegung in External Magnetic Field: Classic versus Quantum Approach

    Full text link
    We investigate variations of the Zitterbewegung frequency of electron due to an external static and uniform magnetic field employing the expectation value quantum approach, and compare our results with the classical model of spinning particles. We demonstrate that these two so far compatible approaches are not in agreement in the presence of an external uniform static magnetic field, in which the classical approach breaks the usual symmetry of free particles and antiparticles states, i.e. it leads to CP violation. Hence, regarding the Zitterbewegung frequency of electron, the classical approach in the presence of an external magnetic field is unlikely to correctly describe the spin of electron, while the quantum approach does, as expected. We also show that the results obtained via the expectation value are in close agreement with the quantum approach of the Heisenberg picture derived in the literature. However, the method we use is capable of being compared with the classical approach regarding the spin aspects. The classical interpretation of spin produced by the altered Zitterbewegung frequency, in the presence of an external magnetic field, are discussed.Comment: 16 pages, no figure

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Cross-shell excitations in Si 31

    Get PDF
    The Si31 nucleus was produced through the O18(O18, αn) fusion-evaporation reaction at Elab=24MeV. Evaporated α particles from the reaction were detected and identified in the Microball detector array for channel selection. Multiple γ-ray coincidence events were detected in Gammasphere. The energy and angle information for the α particles was used to determine the Si31 recoil kinematics on an event-by-event basis for a more accurate Doppler correction. A total of 22 new states and 52 new γ transitions were observed, including 14 from states above the neutron separation energy. The positive-parity states predicted by the shell-model calculations in the sd model space agree well with experiment. The negative-parity states were compared with shell-model calculations in the psdpf model space with some variations in the N=20 shell gap. The best agreement was found with a shell gap intermediate between that originally used for A≈20 nuclei and that previously adapted for P32,34. This variation suggests the need for a more universal cross-shell interaction

    Intruder configurations of excited states in the neutron-rich isotopes P 33 and P 34

    Get PDF
    Excited states in the neutron-rich isotopes P33 and P34 were populated by the O18+O18 fusion-evaporation reaction at Elab=24 MeV. The Gammasphere array was used along with the Microball particle detector array to detect γ transitions in coincidence with the charged particles emitted from the compound nucleus S36. The use of Microball enabled the selection of the proton emission channel. It also helped in determining the exact position and energy of the emitted proton; this was later employed in kinematic Doppler corrections. 16 new transitions and 13 new states were observed in P33 and 21 γ rays and 20 energy levels were observed in P34 for the first time. The nearly 4π geometry of Gammasphere allowed the measurement of γ-ray angular distributions leading to spin assignments for many states. The experimental observations for both isotopes were interpreted with the help of shell-model calculations using the (0+1)ω PSDPF interaction. The calculations accounted for both the 0p-0h and 1p-1h states reasonably well and indicated that 2p-2h excitations might dominate the higher-spin configurations in both P33 and P34

    Observations of the High Redshift Universe

    Get PDF
    (Abridged) In these lectures aimed for non-specialists, I review progress in understanding how galaxies form and evolve. Both the star formation history and assembly of stellar mass can be empirically traced from redshifts z~6 to the present, but how the various distant populations inter-relate and how stellar assembly is regulated by feedback and environmental processes remains unclear. I also discuss how these studies are being extended to locate and characterize the earlier sources beyond z~6. Did early star-forming galaxies contribute significantly to the reionization process and over what period did this occur? Neither theory nor observations are well-developed in this frontier topic but the first results presented here provide important guidance on how we will use more powerful future facilities.Comment: To appear in `First Light in Universe', Saas-Fee Advanced Course 36, Swiss Soc. Astrophys. Astron. in press. 115 pages, 64 figures (see http://www.astro.caltech.edu/~rse/saas-fee.pdf for hi-res figs.) For lecture ppt files see http://obswww.unige.ch/saas-fee/preannouncement/course_pres/overview_f.htm

    Psychology and aggression

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd
    corecore