596 research outputs found

    Small Mercury Relativity Orbiter

    Get PDF
    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time

    Possible Periodic Orbit Control Maneuvers for an eLISA Mission

    Get PDF
    This paper investigates the possible application of periodic orbit control maneuvers for so-called evolved-LISA (eLISA) missions, i.e., missions for which the constellation arm lengths and mean distance from the Earth are substantially reduced. We find that for missions with arm lengths of 106 km and Earth-trailing distance ranging from approx. 12deg to 20deg over the science lifetime, the occasional use of the spacecraft micro-Newton thrusters for constellation configuration maintenance should be able to essentially eliminate constellation distortion caused by Earth-induced tidal forces at a cost to science time of only a few percent. With interior angle variation kept to approx. +/-0:1deg, the required changes in the angles between the laser beam pointing directions for the two arms from any spacecraft could be kept quite small. This would considerably simplify the apparatus necessary for changing the transmitted beam directions

    Confusion Noise Level Due to Galactic and Extragalactic Binaries

    Get PDF
    We have revised our earlier rough estimate of the combined galactic and extragalactic binary confusion noise level curve for gravitational waves. This was done to correct some numerical errors and to allow for roughly three frequency bins worth of information about weaker sources being lost for each galactic binary signal that is removed from the data. The results are still based on the spectral amplitude estimates for different types of galactic binaries reported by Hils et al in 1990, and assume that the gravitational wave power spectral densities for other galaxies are proportional to the optical luminosities. The estimated confusion noise level drops to the LISA instrumental noise level at between roughly 3 and 8 MHz

    Comparison of LISA and Atom Interferometry for Gravitational Wave Astronomy in Space

    Full text link
    One of the atom interferometer gravitational wave missions proposed by Dimopoulos et al.1 in 2008 was called AGIS-Sat. 2. It had a suggested gravitational wave sensitivity set by the atom state detection shot noise level that started at 1 mHz, was comparable to LISA sensitivity from 1 to about 20 mHz, and had better sensitivity from 20 to 500 mHz. The separation between the spacecraft was 1,000 km, with atom interferometers 200 m long and shades from sunlight used at each end. A careful analysis of many error sources was included, but requirements on the time-stability of both the laser wavefront aberrations and the atom temperatures in the atom clouds were not investigated. After including these considerations, the laser wavefront aberration stability requirement to meet the quoted sensitivity level is about 1\times10-8 wavelengths, and is far tighter than for LISA. Also, the temperature fluctuations between atom clouds have to be less than 1 pK. An alternate atom interferometer GW mission in Earth orbit called AGIS-LEO with 30 km satellite separation has been suggested recently. The reduction of wavefront aberration noise by sending the laser beam through a high-finesse mode-scrubbing optical cavity is discussed briefly, but the requirements on such a cavity are not given. Unfortunately, such an Earth-orbiting mission seems to be considerably more difficult to design than a non-geocentric mission and does not appear to have comparably attractive scientific goals.Comment: Submitted to Proc. 46th Rencontres de Moriond: Gravitational Waves and Experimental Gravity, March 20 - 27, 2011, La Thuile, Ital

    Optical interferometer in space

    Get PDF
    The present design concepts for a Laser Gravitational Wave Observatory in Space are described. Laser heterodyne distance measurements are made between test masses located in three spacecraft separated by roughly 10(exp 6) km. The major technology issues are: the reduction of spurious acceleration noise for the test masses to below 2 x 10(exp -15) cm/sq sec/Hz(0.5) from 10(exp -5) to 10(exp -3) Hz; and the measurement of changes in the difference of the antenna arm lengths to 5 x 10(exp -11) cm/Hz(0.5) from 10(exp -3) to 1 Hz with high reliability. The science objectives are: to measure discrete sinusoidal gravitational wave signals from individual sources with periods of 1 second to 1 day; to measure the stochastic background due to unresolved binaries; and to search for gravitational wave pulses with periods longer than 1 sec from possible exotic sources such as gravitational collapse of very massive objects

    The scalar bi-spectrum during preheating in single field inflationary models

    Full text link
    In single field inflationary models, preheating refers to the phase that immediately follows inflation, but precedes the epoch of reheating. During this phase, the inflaton typically oscillates at the bottom of its potential and gradually transfers its energy to radiation. At the same time, the amplitude of the fields coupled to the inflaton may undergo parametric resonance and, as a consequence, explosive particle production can take place. A priori, these phenomena could lead to an amplification of the super-Hubble scale curvature perturbations which, in turn, would modify the standard inflationary predictions. However, remarkably, it has been shown that, although the Mukhanov-Sasaki variable does undergo narrow parametric instability during preheating, the amplitude of the corresponding super-Hubble curvature perturbations remain constant. Therefore, in single field models, metric preheating does not affect the power spectrum of the large scale perturbations. In this article, we investigate the corresponding effect on the scalar bi-spectrum. Using the Maldacena's formalism, we analytically show that, for modes of cosmological interest, the contributions to the scalar bi-spectrum as the curvature perturbations evolve on super-Hubble scales during preheating is completely negligible. Specifically, we illustrate that, certain terms in the third order action governing the curvature perturbations which may naively be expected to contribute significantly are exactly canceled by other contributions to the bi-spectrum. We corroborate selected analytical results by numerical investigations. We conclude with a brief discussion of the results we have obtained.Comment: v1: 15 pages, 4 figures; v2: 15 pages, 4 figures, discussion and references added, to appear in Phys. Rev.
    • …
    corecore