12,109 research outputs found

    Multiple-Scale Analysis of the Quantum Anharmonic Oscillator

    Get PDF
    Conventional weak-coupling perturbation theory suffers from problems that arise from resonant coupling of successive orders in the perturbation series. Multiple-scale perturbation theory avoids such problems by implicitly performing an infinite reordering and resummation of the conventional perturbation series. Multiple-scale analysis provides a good description of the classical anharmonic oscillator. Here, it is extended to study the Heisenberg operator equations of motion for the quantum anharmonic oscillator. The analysis yields a system of nonlinear operator differential equations, which is solved exactly. The solution provides an operator mass renormalization of the theory.Comment: 12 pages, Revtex, no figures, available through anonymous ftp from ftp://euclid.tp.ph.ic.ac.uk/papers/ or on WWW at http://euclid.tp.ph.ic.ac.uk/Papers/papers_95-6_.htm

    Model of supersymmetric quantum field theory with broken parity symmetry

    Get PDF
    Recently, it was observed that self-interacting scalar quantum field theories having a non-Hermitian interaction term of the form g(iϕ)2+δg(i\phi)^{2+\delta}, where δ\delta is a real positive parameter, are physically acceptable in the sense that the energy spectrum is real and bounded below. Such theories possess PT invariance, but they are not symmetric under parity reflection or time reversal separately. This broken parity symmetry is manifested in a nonzero value for , even if δ\delta is an even integer. This paper extends this idea to a two-dimensional supersymmetric quantum field theory whose superpotential is S(ϕ)=ig(iϕ)1+δ{\cal S}(\phi)=-ig(i\phi)^{1+\delta}. The resulting quantum field theory exhibits a broken parity symmetry for all δ>0\delta>0. However, supersymmetry remains unbroken, which is verified by showing that the ground-state energy density vanishes and that the fermion-boson mass ratio is unity.Comment: 20 pages, REVTeX, 11 postscript figure

    Systematics of quadrupolar correlation energies

    Full text link
    We calculate correlation energies associated with the quadrupolar shape degrees of freedom with a view to improving the self-consistent mean-field theory of nuclear binding energies. The Generator Coordinate Method is employed using mean-field wave functions and the Skyrme SLy4 interaction. Systematic results are presented for 605 even-even nuclei of known binding energies, going from mass A=16 up to the heaviest known. The correlation energies range from 0.5 to 6.0 MeV in magnitude and are rather smooth except for large variations at magic numbers and in light nuclei. Inclusion of these correlation energies in the calculated binding energy is found to improve two deficiencies of the Skyrme mean field theory. The pure mean field theory has an exaggerated shell effect at neutron magic numbers and addition of the correlation energies reduce it. The correlations also explain the phenomenon of mutually enhanced magicity, an interaction between neutron and proton shell effects that is not explicable in mean field theory.Comment: 4 pages with 3 embedded figure

    Microscopic models for exotic nuclei

    Full text link
    Starting from successful self-consistent mean-field models, this paper discusses why and how to go beyond the mean field approximation. To include long-range correlations from fluctuations in collective degrees of freedom, one has to consider symmetry restoration and configuration mixing, which give access to ground-state correlations and spectroscopy.Comment: invited talk at ENAM0

    Pairing correlations beyond the mean field

    Full text link
    We discuss dynamical pairing correlations in the context of configuration mixing of projected self-consistent mean-field states, and the origin of a divergence that might appear when such calculations are done using an energy functional in the spirit of a naive generalized density functional theory.Comment: Proceedings of the XIII Nuclear Physics Workshop ``Maria and Pierre Curie'' on ``Pairing and beyond - 50 years of the BCS model'', held at Kazimierz Dolny, Poland, September 27 - October 1, 2006. Int. J. Mod. Phys. E, in prin

    Beyond-mean-field-model analysis of low-spin normal-deformed and superdeformed collective states of S32, Ar36, Ar38 and Ca40

    Full text link
    We investigate the coexistence of spherical, deformed and superdeformed states at low spin in S32, Ar36, Ar38 and Ca40. The microscopic states are constructed by configuration mixing of BCS states projected on good particle number and angular momentum. The BCS states are themselves obtained from Hartree-Fock BCS calculations using the Skyrme interaction SLy6 for the particle-hole channel, and a density-dependent contact force in the pairing channel. The same interaction is used within the Generator Coordinate Method to determine the configuration mixing and calculate the properties of even-spin states with positive parity. Our calculations underestimate moments of inertia. Nevertheless, for the four nuclei, the global structural properties of the states of normal deformation as well as the recently discovered superdeformed bands up to spin 6 are correctly reproduced with regard to both the energies and the transition rates.Comment: 14 pages revtex4, 15 eps figures, 8 table

    Level Crossings in Complex Two-Dimensional Potentials

    Full text link
    Two-dimensional PT-symmetric quantum-mechanical systems with the complex cubic potential V_{12}=x^2+y^2+igxy^2 and the complex Henon-Heiles potential V_{HH}=x^2+y^2+ig(xy^2-x^3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the PT symmetry, the complex energy eigenvalues appear when level crossing happens between same parity eigenstates.Comment: 9 pages, 4 figures. Submitted as a conference proceeding of PHHQP

    Symmetry restoration for odd-mass nuclei with a Skyrme energy density functional

    Full text link
    In these proceedings, we report first results for particle-number and angular-momentum projection of self-consistently blocked triaxial one-quasiparticle HFB states for the description of odd-A nuclei in the context of regularized multi-reference energy density functionals, using the entire model space of occupied single-particle states. The SIII parameterization of the Skyrme energy functional and a volume-type pairing interaction are used.Comment: 8 pages, 3 figures, workshop proceeding

    Vector Casimir effect for a D-dimensional sphere

    Get PDF
    The Casimir energy or stress due to modes in a D-dimensional volume subject to TM (mixed) boundary conditions on a bounding spherical surface is calculated. Both interior and exterior modes are included. Together with earlier results found for scalar modes (TE modes), this gives the Casimir effect for fluctuating ``electromagnetic'' (vector) fields inside and outside a spherical shell. Known results for three dimensions, first found by Boyer, are reproduced. Qualitatively, the results for TM modes are similar to those for scalar modes: Poles occur in the stress at positive even dimensions, and cusps (logarithmic singularities) occur for integer dimensions D1D\le1. Particular attention is given the interesting case of D=2.Comment: 20 pages, 1 figure, REVTe
    corecore