2,162 research outputs found

    Vector Casimir effect for a D-dimensional sphere

    Get PDF
    The Casimir energy or stress due to modes in a D-dimensional volume subject to TM (mixed) boundary conditions on a bounding spherical surface is calculated. Both interior and exterior modes are included. Together with earlier results found for scalar modes (TE modes), this gives the Casimir effect for fluctuating ``electromagnetic'' (vector) fields inside and outside a spherical shell. Known results for three dimensions, first found by Boyer, are reproduced. Qualitatively, the results for TM modes are similar to those for scalar modes: Poles occur in the stress at positive even dimensions, and cusps (logarithmic singularities) occur for integer dimensions D1D\le1. Particular attention is given the interesting case of D=2.Comment: 20 pages, 1 figure, REVTe

    Water-in-air droplet formation in plasma bonded microchannels fabricated by Shrinky-Dink® lithography

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2011This thesis presents the first work on water-in-air droplet microfluidics. Polymeric microchannels were prototyped to illustrate water droplet formation in air by the T-junction meditated design. The first part of the thesis is on the proof of using unfiltered air as the process gas for plasma-assisted bonding of polydimethylsiloxane (PDMS) microchannels. A series of bilayered PDMS prototypes were plasma bonded under various plasma treatment parameters to determine the optimal settings for high-strength bonding. Pressure rupture tests were conducted to measure the bonding interface strength, which were shown to be as high as 135 psi. The second part of the thesis illustrates the formation and dispersion of water droplets in a continuous air flow in microchannels, and discusses the mechanisms of how droplets are formed. The Shrinky Dinks lithography and plasma-assisted bonding were used to prototype leakage-free microcbannels for testing droplet production. Droplets are formed under the competition between the fluid viscosity and surface tension forces. The channel dimensions and the fluid flow rates dictate the mechanism of droplet formation. The major finding is that the droplet length increases and droplet velocity decreases with increasing water flow rates, but some droplets were not formed at the T-Junction. These findings are discussed.Alaska NASA EPSCoR Progra

    Casimir effect for a DD-dimensional sphere

    Full text link
    The Casimir force on a DD-dimensional sphere due to the confinement of a massless scalar field is computed as a function of DD, where DD is a continuous variable that ranges from -\infty to \infty. The dependence of the force on the dimension is obtained using a simple and straightforward Green's function technique. We find that the Casimir force vanishes as D+D\to +\infty (DD non-even integer) and also vanishes when DD is a negative even integer. The force has simple poles at positive even integer values of DD.Comment: 22 pages, REVTeX, 4 uuencoded figures, OKHEP-94-0

    An exactly solvable self-convolutive recurrence

    Full text link
    We consider a self-convolutive recurrence whose solution is the sequence of coefficients in the asymptotic expansion of the logarithmic derivative of the confluent hypergeometic function U(a,b,z)U(a,b,z). By application of the Hilbert transform we convert this expression into an explicit, non-recursive solution in which the nnth coefficient is expressed as the (n1)(n-1)th moment of a measure, and also as the trace of the (n1)(n-1)th iterate of a linear operator. Applications of these sequences, and hence of the explicit solution provided, are found in quantum field theory as the number of Feynman diagrams of a certain type and order, in Brownian motion theory, and in combinatorics

    Progress in Lunar Laser Ranging Tests of Relativistic Gravity

    Full text link
    Analyses of laser ranges to the Moon provide increasingly stringent limits on any violation of the Equivalence Principle (EP); they also enable several very accurate tests of relativistic gravity. We report the results of our recent analysis of Lunar Laser Ranging (LLR) data giving an EP test of \Delta (M_G/M_I)_{EP} =(-1.0 +/- 1.4) x 10^{-13}. This result yields a Strong Equivalence Principle (SEP) test of \Delta (M_G/M_I)_{SEP} =(-2.0 +/- 2.0) x 10^{-13}. Also, the corresponding SEP violation parameter \eta is (4.4 +/- 4.5) x 10^{-4}, where \eta=4\beta-\gamma-3 and both \beta and \gamma are parametrized post-Newtonian (PPN) parameters. Using the recent Cassini result for the parameter \gamma, PPN parameter \beta is determined to be \beta-1=(1.2 +/- 1.1) x 10^{-4}. The geodetic precession test, expressed as a relative deviation from general relativity, is K_{gp}=-0.0019 +/- 0.0064. The search for a time variation in the gravitational constant results in \dot G/G=(4 +/- 9) x 10^{-13} yr^{-1}, consequently there is no evidence for local (~1AU) scale expansion of the solar system.Comment: 4 pages, revtex4, minor changes made for publicatio

    Phononic Self energy effects and superconductivity in CaC6_6

    Full text link
    We study the graphite intercalated compound CaC6_6 by means of Eliashberg theory, focusing on the anisotropy properties. An analysis of the electron-phonon coupling is performed, and we define a minimal 6-band anisotropy structure. Comparing with Superconducting Density Functional Theory (SCDFT) the condition under which Eliashberg theory is able to reproduce the SCDFT gap structure is determined, and we discuss the role of Coulomb interactions. The Engelsberg-Schrieffer polaron structure is computed by solving the Eliashberg equation on the Matsubara axis and analytically continuing it to the full complex plane. This reveals the polaronic quasiparticle bands anisotropic features as well as the interplay with superconductivity

    PT-symetrically regularized Eckart,Poeschl-Teller and Hulthen potentials

    Full text link
    Version 1: The well known Eckart's singular s-wave potential is PT-symmetrically regularized and continued to the whole real line. The new model remains exactly solvable and its bound states remain proportional to Jacobi polynomials. Its real and discrete spectrum exhibits several unusual features. Version 2: Parity times time-reversal symmetry of complex Hamiltonians with real spectra is usually interpreted as a weaker mathematical substitute for Hermiticity. Perhaps an equally important role is played by the related strengthened analyticity assumptions. In a constructive illustration we complexify a few potentials solvable only in s-wave. Then we continue their domain from semi-axis to the whole axis and get the new exactly solvable models. Their energies come out real as expected. The new one-dimensional spectra themselves differ quite significantly from their s-wave predecessors.Comment: Original 10-page letter ``PT-symmetrized exact solution of the singular Eckart oscillator" is extended to a full pape

    Nuclear Ground State Observables and QCD Scaling in a Refined Relativistic Point Coupling Model

    Get PDF
    We present results obtained in the calculation of nuclear ground state properties in relativistic Hartree approximation using a Lagrangian whose QCD-scaled coupling constants are all natural (dimensionless and of order 1). Our model consists of four-, six-, and eight-fermion point couplings (contact interactions) together with derivative terms representing, respectively, two-, three-, and four-body forces and the finite ranges of the corresponding mesonic interactions. The coupling constants have been determined in a self-consistent procedure that solves the model equations for representative nuclei simultaneously in a generalized nonlinear least-squares adjustment algorithm. The extracted coupling constants allow us to predict ground state properties of a much larger set of even-even nuclei to good accuracy. The fact that the extracted coupling constants are all natural leads to the conclusion that QCD scaling and chiral symmetry apply to finite nuclei.Comment: 44 pages, 13 figures, 9 tables, REVTEX, accepted for publication in Phys. Rev.
    corecore