1 research outputs found
The abelian sandpile and related models
The Abelian sandpile model is the simplest analytically tractable model of
self-organized criticality. This paper presents a brief review of known results
about the model. The abelian group structure allows an exact calculation of
many of its properties. In particular, one can calculate all the critical
exponents for the directed model in all dimensions. For the undirected case,
the model is related to q= 0 Potts model. This enables exact calculation of
some exponents in two dimensions, and there are some conjectures about others.
We also discuss a generalization of the model to a network of communicating
reactive processors. This includes sandpile models with stochastic toppling
rules as a special case. We also consider a non-abelian stochastic variant,
which lies in a different universality class, related to directed percolation.Comment: Typos and minor errors fixed and some references adde
