97 research outputs found

    Insulin-like growth factor binding protein-2 (IGFBP2) is a key molecule in the MACC1-mediated platelet communication and metastasis of colorectal cancer cells

    Get PDF
    Tumor cell crosstalk with platelets and, subsequently, their activation are key steps in hematogenous tumor metastasis. MACC1 is an oncogene involved in molecular pathogenesis of colorectal cancer (CRC) and other solid tumor entities, mediating motility and metastasis, making MACC1 an accepted prognostic biomarker. However, the impact of MACC1 on platelet activation has not yet been addressed. Here, we investigated the activation of platelets by human CRC cells upon MACC1 modulation, indicated by platelet aggregation and granule release. These approaches led to the identification of insulin-like growth factor binding protein-2 (IGFBP2) as a functional downstream molecule of MACC1, affecting communication with platelets. This was confirmed by an shRNA-mediated IGFBP2 knockdown, while maintaining MACC1 activity. Although IGFBP2 displayed an attenuated platelet activation potential, obviously by scavenging IGF-I as a platelet costimulatory mediator, the MACC1/IGFBP2 axis did not affect the thrombin formation potential of the cells. Furthermore, the IGFBP2/MACC1-driven cell migration and invasiveness was further accelerated by platelets. The key role of IGFBP2 for the metastatic spread in vivo was confirmed in a xenograft mouse model. Data provide evidence for IGFBP2 as a downstream functional component of MACC1-driven metastasis, linking these two accepted oncogenic biomarkers for the first time in a platelet context

    Membrane fusion mediated by ricin and viscumin

    Get PDF
    AbstractThe ribosome inactivating plant proteins (RIPs) ricin and viscumin but not Ricinus communis agglutinin are able induce vesicle–vesicle fusion. A model is suggested in which the toxicity of the RIPs is partially determined by their fusogenicity. Herein, fusion is hypothesized to allow the RIPs to leak across endocytic vesicles to approve their access to cytoplasmic ribosomes

    1-methylnicotinamide and its structural analog 1,4-dimethylpyridine for the prevention of cancer metastasis

    Get PDF
    Background: 1-methylnicotinamide (1-MNA), an endogenous metabolite of nicotinamide, has recently gained interest due to its anti-inflammatory and anti-thrombotic activities linked to the COX-2/PGI2 pathway. Given the previously reported anti-metastatic activity of prostacyclin (PGI2), we aimed to assess the effects of 1-MNA and its structurally related analog, 1,4-dimethylpyridine (1,4-DMP), in the prevention of cancer metastasis. Methods: All the studies on the anti-tumor and anti-metastatic activity of 1-MNA and 1,4-DMP were conducted using the model of murine mammary gland cancer (4T1) transplanted either orthotopically or intravenously into female BALB/c mouse. Additionally, the effect of the investigated molecules on cancer cell-induced angiogenesis was estimated using the matrigel plug assay utilizing 4T1 cells as a source of pro-angiogenic factors. Results: Neither 1-MNA nor 1,4-DMP, when given in a monotherapy of metastatic cancer, influenced the growth of 4T1 primary tumors transplanted orthotopically; however, both compounds tended to inhibit 4T1 metastases formation in lungs of mice that were orthotopically or intravenously inoculated with 4T1 or 4T1-luc2-tdTomato cells, respectively. Additionally, while 1-MNA enhanced tumor vasculature formation and markedly increased PGI2 generation, 1,4-DMP did not have such an effect. The anti-metastatic activity of 1-MNA and 1,4-DMP was further confirmed when both agents were applied with a cytostatic drug in a combined treatment of 4T1 murine mammary gland cancer what resulted in up to 80 % diminution of lung metastases formation. Conclusions: The results of the studies presented below indicate that 1-MNA and its structural analog 1,4-DMP prevent metastasis and might be beneficially implemented into the treatment of metastatic breast cancer to ensure a comprehensive strategy of metastasis control

    VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo

    Get PDF
    AbstractTargeting the tumor vasculature and selectively modifying endothelial functions is an attractive anti-tumor strategy. We prepared polyethyleneglycol modified immunoliposomes (IL) directed against vascular cell adhesion molecule 1 (VCAM-1), a surface receptor over-expressed on tumor vessels, and investigated the liposomal targetability in vitro and in vivo. In vitro, anti-VCAM-1 liposomes displayed specific binding to activated endothelial cells under static conditions, as well as under simulated blood flow conditions. The in vivo targeting of IL was analysed in mice bearing human Colo 677 tumor xenografts 30 min and 24 h post i.v. injection. Whereas biodistribution studies using [3H]-labelled liposomes displayed only marginal higher tumor accumulation of VCAM-1 targeted versus unspecific ILs, fluorescence microscopy evaluation revealed that their localisations within tumors differed strongly. VCAM-1 targeted ILs accumulated in tumor vessels with increasing intensities from 30 min to 24 h, while control ILs accumulated in the tumor tissue by passive diffusion. ILs that accumulated in non-affected organs, mainly liver and spleen, primarily co-localised with macrophages. This is the first morphological evidence for selective in vivo targeting of tumor vessels using ILs. VCAM-directed ILs are candidate drug delivery systems for therapeutic anti-cancer approaches designed to alter endothelial function

    Cooperation between lateral ligand mobility and accessibility for receptor recognition in selectin-induced cell rolling

    No full text
    Selectin-induced leukocyte rolling along the endothelial surface is an essential step in the immune response. Several in vitro studies showed that this cell rolling is a highly regulated adhesion phenomenon, controlled by the kinetics and forces of selectin-ligand interactions. In the flow chamber study presented here, we focused on the requirements on the ligand structure in this context. A series of neoglycolipids bearing the binding epitope Sialyl Lewis X was synthesized and used as artificial ligands. These lipids differed in their spacer structures between headgroup and membrane anchor, resulting in a gradual variation in accessibility and mobility of the binding epitope when immobilized in model membranes. Consequently, analysis of cell rolling along such membranes allowed correlation of ligand structures and functionality. All model membranes containing such ligands were further characterized by film balance measurements, epifluorescence, and atomic force microscopy. Generally, the glycolipids exhibited a high tendency for lateral aggregation, but the resulting clusters were of different morphology. This was also reflected by strong differences in the rolling experiments. Our results confirm that, in addition to a sufficient headgroup accessibility, the cell rolling process is governed by two further interdependent factors: (i) the headgroup flexibility caused by the intramolecular uncoupling between the headgroup and the hydrophobic moiety due to introduction of a spacer, and (ii) the stiffness of the molecules resulting from their supramolecular arrangement in clustered assemblies. Since both factors are influenced simultaneously by the spacer modification, we present for the first time a clear correlation between structural aspects of selectin ligands and their ability to mediate cell rolling. This might help to develop a better understanding for the function of the natural selectin ligands

    A dynamic test system to investigate selectin-induced cell rolling in order to search for new antiinflammatory compounds

    No full text
    The accumulation of leukocytes in the vasculature at inflammatory sites and their emigration into the local tissue is a multistep process, which is mediated by various cell adhesion molecules. The selectins, a family of three carbohydrate-binding proteins, initiate the adhesion by mediating tethering and rolling of leukocytes along the vessel wall in the vascular shear flow. Because of their central role in the immune defence, a blocking of selectins appears as a novel therapeutical strategy for systematically controlling pathological inflammations at an early stage. In order to find selectin inhibitors serving as new potential antiinflammatory drugs, we simulate the molecular mechanisms of selectin binding in a dynamic model system. The selectin-induced adhesion and rolling of cells on a model membrane exposed to a shear rate of a flow chamber was analyzed by confocal fluorescence microscopy. On that basis we analyzed the selectin inhibitory efficiency of a series of carbohydrate compounds, which are structurally derived from the tetrasaccharide Sialyl Lewis'. In contrast to the common static binding assays, inhibitors in our dynamic system block the selectin-mediated cell rolling in agreement with the physiological situation. The inhibitory potency of these compounds was exactly manifested in reduced cell binding events and in increased rolling velocity. Compared to the results in a static binding assay, distinct differences could be detected, which were explained by the dominance of different binding forces in both systems. Consequently, the structure-activity relationships of these compounds differ under both static and dynamic conditions. Therefore, the results confirm the importance to consider the physiological shear force conditions in the inhibitor screening. Since the dynamic system further offers a great variety in the choice of the ligand-receptor pairs it is an excellent tool for the inhibitor screening
    corecore