7 research outputs found

    Towards Open World Recognition

    Full text link
    With the of advent rich classification models and high computational power visual recognition systems have found many operational applications. Recognition in the real world poses multiple challenges that are not apparent in controlled lab environments. The datasets are dynamic and novel categories must be continuously detected and then added. At prediction time, a trained system has to deal with myriad unseen categories. Operational systems require minimum down time, even to learn. To handle these operational issues, we present the problem of Open World recognition and formally define it. We prove that thresholding sums of monotonically decreasing functions of distances in linearly transformed feature space can balance "open space risk" and empirical risk. Our theory extends existing algorithms for open world recognition. We present a protocol for evaluation of open world recognition systems. We present the Nearest Non-Outlier (NNO) algorithm which evolves model efficiently, adding object categories incrementally while detecting outliers and managing open space risk. We perform experiments on the ImageNet dataset with 1.2M+ images to validate the effectiveness of our method on large scale visual recognition tasks. NNO consistently yields superior results on open world recognition

    Efficient Defenses Against Adversarial Attacks

    Full text link
    Following the recent adoption of deep neural networks (DNN) accross a wide range of applications, adversarial attacks against these models have proven to be an indisputable threat. Adversarial samples are crafted with a deliberate intention of undermining a system. In the case of DNNs, the lack of better understanding of their working has prevented the development of efficient defenses. In this paper, we propose a new defense method based on practical observations which is easy to integrate into models and performs better than state-of-the-art defenses. Our proposed solution is meant to reinforce the structure of a DNN, making its prediction more stable and less likely to be fooled by adversarial samples. We conduct an extensive experimental study proving the efficiency of our method against multiple attacks, comparing it to numerous defenses, both in white-box and black-box setups. Additionally, the implementation of our method brings almost no overhead to the training procedure, while maintaining the prediction performance of the original model on clean samples.Comment: 16 page

    VisionBlocks: A Social Computer Vision Framework

    Get PDF
    Vision Blocks (http://visionblocks.org) is an on demand, in-browser, customizable computer vision application publishing platform for masses. It empowers end-users (consumers)to create novel solutions for themselves that they would not easily obtain off-the-shelf. By transferring design capability to the consumers, we enable creation and dissemination of custom products and algorithms. We adapt a visual programming paradigm to codify vision algorithms for general use. As a proof of-concept, we implement computer vision algorithms such as motion tracking, face detection, change detection and others. We demonstrate their applications on real-time video. Our studies show that end users (non programmers) only need 50% more time to build such systems when compared to the most experienced researchers. We made progress towards closing the gap between researchers and consumers by finding that users rate the intuitiveness of the approach in a level 6% less than researchers. We discuss different application scenarios where such study will be useful and argue its benefit for computer vision research community. We believe that enabling users with ability to create application will be first step towards creating social computer vision applications and platform.Alfred P. Sloan Foundation (Research Fellowship

    CBHE: Corner-based building height estimation for complex street scene images

    Get PDF
    Building height estimation is important in many applications such as 3D city reconstruction, urban planning, and navigation. Recently, a new building height estimation method using street scene images and 2D maps was proposed. This method is more scalable than traditional methods that use high-resolution optical data, LiDAR data, or RADAR data which are expensive to obtain. The method needs to detect building rooflines and then compute building height via the pinhole camera model. We observe that this method has limitations in handling complex street scene images in which buildings overlap with each other and the rooflines are difficult to locate. We propose CBHE, a building height estimation algorithm considering both building corners and rooflines. CBHE first obtains building corner and roofline candidates in street scene images based on building footprints from 2D maps and the camera parameters. Then, we use a deep neural network named BuildingNet to classify and filter corner and roofline candidates. Based on the valid corners and rooflines from BuildingNet, CBHE computes building height via the pinhole camera model. Experimental results show that the proposed BuildingNet yields a higher accuracy on building corner and roofline candidate filtering compared with the state-of-the-art open set classifiers. Meanwhile, CBHE outperforms the baseline algorithm by over 10% in building height estimation accuracy
    corecore