
CBHE: Corner-based Building Height Estimation for Complex
Street Scene Images

Yunxiang Zhao
The University of Melbourne & NUDT
yunxiangz@student.unimelb.edu.au

Jianzhong Qi
The University of Melbourne
jianzhong.qi@unimelb.edu.au

Rui Zhang∗
The University of Melbourne
rui.zhang@unimelb.edu.au

ABSTRACT
Building height estimation is important in many applications such
as 3D city reconstruction, urban planning, and navigation. Recently,
a new building height estimation method using street scene images
and 2D maps was proposed. This method is more scalable than
traditional methods that use high-resolution optical data, LiDAR
data, or RADAR data which are expensive to obtain. The method
needs to detect building rooflines and then compute building height
via the pinhole camera model. We observe that this method has
limitations in handling complex street scene images in which build-
ings overlap with each other and the rooflines are difficult to locate.
We propose CBHE, a building height estimation algorithm con-
sidering both building corners and rooflines. CBHE first obtains
building corner and roofline candidates in street scene images based
on building footprints from 2D maps and the camera parameters.
Then, we use a deep neural network named BuildingNet to classify
and filter corner and roofline candidates. Based on the valid corners
and rooflines from BuildingNet, CBHE computes building height
via the pinhole camera model. Experimental results show that the
proposed BuildingNet yields a higher accuracy on building corner
and roofline candidate filtering compared with the state-of-the-art
open set classifiers. Meanwhile, CBHE outperforms the baseline
algorithm by over 10% in building height estimation accuracy.

CCS CONCEPTS
• Information systems→ Location based services; •Comput-
ing methodologies → Neural networks; Camera calibration;
Image representations.

KEYWORDS
Building Height Estimation; Camera Location Calibration; Open
Set Classification

ACM Reference Format:
Yunxiang Zhao, Jianzhong Qi, and Rui Zhang. 2019. CBHE: Corner-based
Building Height Estimation for Complex Street Scene Images. In Proceedings
of the 2019 World Wide Web Conference (WWW’19), May 13–17, 2019, San
Francisco, CA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3308558.3313394

∗Corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313394

Figure 1: Building A’s rooflines are hard to detect due to
the overlapping with building B, while building A’s corners
can help figure out the true rooflines. Red arrows: building
rooflines; Blue arrows: building corners.

1 INTRODUCTION
Building height plays an essential role in many applications, such
as 3D city reconstruction [3, 30], urban planning [29], naviga-
tion [14, 32], and geographic knowledge bases [50]. For example,
in navigation, knowing the height of buildings helps identify those
standing out in a city block, which can then be used to facilitate
navigation by generating instructions such as "turn left before an
18 meters high (five-story) building".

Previous studies for building height estimation are mainly based
on high-resolution optical data [18, 48], synthetic aperture radar
(SAR) images [7, 41], and Light Detection and Ranging (LiDAR)
data [33, 44]. Such data, however, are expensive to obtain and hence
the above approach is difficult to apply at a large scale, e.g., to all
the buildings on earth. Moreover, such data is usually proprietary
and not available to the public and research community. Recently,
street scene images (or together with 2D maps) have been used for
building height estimation [11, 46], which can be easily obtained
at large scale (e.g., via open source mapping applications such
as Google Street View [2] and OpenStreetMap [16]). Estimating
building height via street scene images relies on accurate detection
of building rooflines from the images, which then enables building
height computation using camera projection. However, existing
methods for roofline detection check the roofline segments only,
which may be confused with overlapping buildings. As shown in
Fig. 1, the roofline of building B may be detected as the roofline of
building A because the rooflines of different buildings may be in
parallel with each other, and the buildings have similar colors and
positions in the street scene images.

In this paper, we present a novel algorithm named Corner-based
Height Estimation (CBHE) to estimate building height for complex
street scene images (with blocking problem from other buildings and
trees). Our key idea to handle overlapping buildings is to detect not
only the rooflines but also building corners. We obtain coordinates
of building corners from building footprints in a 2D map (e.g.,
OpenStreetMap). We then map the corner coordinates into the

2436

https://doi.org/10.1145/3308558.3313394
https://doi.org/10.1145/3308558.3313394
https://doi.org/10.1145/3308558.3313394

street scene image to detect building corners in the image. Corners
of different buildings do not share the same coordinates, and it is
easier to associate them with different buildings, as shown in Fig. 1.

CBHEworks as follows. It starts with an upper-bound estimation
of the height of a building, which is computed as the maximum
height that can be captured by the camera. It then tries to locate a
line (i.e., a roofline candidate) at this height and repeats this process
by iteratively reducing the height estimation. Following a similar
procedure, CBHE also locates a set of building corner candidates.
Next, CBHE filters the roofline candidates with the help of the
corner candidates (i.e., a roofline candidate needs to be connected
to a corner of the same building to be a true roofline). When the
true roofline is identified, CBHE uses the pinhole camera model to
compute the building height.

In the process above, when locating the roofline and corner can-
didates, we fetch two sets of image segments that may contain
building rooflines or corners, respectively. To filter each set of ob-
jects and identify the true roofline and corner images, we propose
a deep neural network model named BuildingNet. The key idea
of BuildingNet is as follows. Building corner has a limited number
of patterns (e.g., “ ”, “ ", “ ", “ "), while non-corner images may
have any pattern. The same applies to the building rooflines. Thus,
we model building corner (roofline) identification as an open set
image classification problem, where each corner (roofline) pattern
forms a class, while non-corner (non-roofline) images should be
differentiated from them when building the classifier. To do so,
BuildingNet learns embeddings of the input images, which mini-
mize the intra-class distance and maximize the inter-class distance,
and then differentiates different classes using a Support Vector Clas-
sification (SVC) model on the learned embeddings. When a new
image comes, the trained SVC model will tell whether it falls into
any corner (roofline) classes. If the image does not fall into any
corner (roofline) classes, it is a non-corner image and can be safely
discarded.

When estimating building height via the pinhole camera model,
the result highly relies on the accuracy of the camera location due to
GPS errors. Therefore, CBHE calibrates the camera location before
roofline detection. To calibrate the camera location, CBHE detects
candidate regions of all building corners in street scene images by
matching buildings in street scene images with their footprints in
2D maps based on the imprecise camera location from GPS. Then, it
uses BuildingNet to classify the corner candidates and remove those
images classified as non-corner. From the remaining corner after
the classification through BuildingNet, CBHE selects two corners
with the highest score (detailed in Section 4.2) to calibrate the
camera location via the pinhole camera model. We summarize our
contributions as follows:

• We model building corner and roofline detection as an open set
classification problem and propose a novel deep neural network
named BuildingNet to solve it. BuildingNet learns embeddings
of the input images, which minimize the intra-class distance and
maximize the inter-class distance. Experimental results show that
BuildingNet achieves higher accuracy on building corner and
roofline identification compared with the state-of-the-art open
set classifiers.

• We propose a corner-based building height estimation algorithm
named CBHE, which uses an entropy-based algorithm to select
the roofline among all candidates from BuildingNet. The entropy-
based algorithm considers both building corner and roofline fea-
tures and yields higher robustness for the overlapping problem in
complex street scene images. Experiments on real-world datasets
show that CBHE outperforms the baseline method by over 10%
regarding the estimation error within two meters.
• We propose a camera location calibration method with an analyt-
ical solution when given the locations of two building corners in
a 2D map, which means highly accurate result can be guaranteed
with the valid building corners from BuildingNet.
We organize the rest of this paper as follows. We review related

work in Section 2 and give an overview of CBHE in Section 3. The
BuildingNet and entropy-based ranking algorithm are presented in
Section 4, and the building height estimation method is detailed in
Section 5. We report experimental results in Section 6 and conclude
the paper in Section 7.

2 RELATEDWORK
In this section, we review studies on camera location calibration and
building heigh estimation. We also detail our baseline method [46].

2.1 Camera Location calibration
Camera location calibration aims to refine the camera location of
the taken images, given rough camera position information from
GPS devices or image localization [1, 25].

Existing work uses 2.5Dmaps (2Dmaps with height information)
to calibrate camera locations. Arth et al. [4] present a mobile device
localization method that calibrates the camera location by matching
building facades in street scene images with their footprints in 2.5D
maps. Armagan et al. [3] train a convolutional neural network (CNN)
to predict the camera location based on a semantic segmentation
of the building facades in input images. Their method iteratively
applies CNN to compute the camera’s position and orientation
until it converges to a location that yields the best match between
building facades and 2.5D maps. Camera location calibration using
2.5D maps can produce good results. The hurdle is the requirement
of building height information for generating 2.5D maps, which
may not be available for every building. Chu et al. [9] extract the
position features of building corner lines (the vertical line of a corner)
and then find the camera location and orientation by matching the
extracted position features with building footprints in 2D maps.
However, their method cannot handle buildings overlapping with
each other or having non-uniform patterns on their facades.

2.2 Building Height Estimation
Building height estimation has been studied using geographical
data such as high-resolution images, synthetic aperture radar (SAR)
images, and Light Detection and Ranging (LiDAR) data.

Studies [18, 23, 31, 39, 48] based on high-resolution images (such
as satellite or optical stereo images) estimate building height via
methods such as elevation comparison and shadow detection, which
may be impacted by lighting and weather condition when the im-
ages are taken. Similarly, methods based on height estimation is
synthetic aperture radar (SAR) images [7, 37, 41] are mainly based

2437

Figure 2: Solution overview

on shadow or layover analysis. Methods based on aerial images
and aerial LiDAR data [33, 36] usually segment, cluster and then
reconstruct building rooftop planar patches according to predefined
geometric structures or shapes [48]. LiDAR data is expensive to
analysis and has a limited operating altitude because the pulses
are only effective between 500 and 2,000 meters [44]. A common
limitation shared by the methods above is that the data that they
use are expensive to collect, which significantly constraints the
scalability of these methods.

Method based on street scene image and 2Dmap. Yuan and
Cheriyadat propose a method for building height estimation uses
street scene images facilitated by 2D maps [46]. Street scene im-
ages are widely available from Google Street View [2], Bing Street-
Side [21] and Baidu Map [5], which makes building height esti-
mation based on such data easier to scale. Yuan and Cheriyadat’s
method has four main steps: (i) Match buildings in a street scene
image with their footprints in a 2D map via camera projection
based on the camera location that comes with the image. Here,
the camera location may be imprecise due to GPS error [15, 47].
(ii) Calibrate the camera location via camera projection with the
extracted building corner lines from street scene images. (iii) Re-
match buildings from a 2D map with those in the street scene image
based on the calibrated camera location, and then detect building
rooflines through edge detection methods. (iv) Compute building
height via camera projection with camera parameters, calibrated
camera location, the height of building rooflines in the street scene
image, and the building footprint in the 2D map.

Our proposed CBHE differs from Yuan and Cheriyadat’s method
in the following two aspects: (A) In Step (ii) of their method, they
calibrate camera location by matching building corner lines in the
street scene image with building footprints in the 2D map. Such
a method cannot handle images in urban areas where the corner
lines of different buildings are too close to be differentiated, or
the buildings have non-uniform patterns/colors on their facades
which makes corner lines difficult to recognize. CBHE uses building
corners instead of corner lines, which puts more restriction on the
references for camera location calibration, and thus yields more

accurate results. (B) In Step (iv) of their method, they use a local
spectral histogram representation [26] as the edge indicator to
capture building rooflines, which can be ineffective when buildings
overlap with each other. CBHE uses the proposed deep neural
network named BuildingNet to learn a latent representation of
building rooflines, which has been shown to be more accurate in
the experiments.

3 OVERVIEW OF CBHE
We present the overall procedure of our proposed CBHE in this
section. We also briefly present the process of camera projection,
which forms the theoretical foundation of building height estima-
tion using street scene images.

3.1 Solution Overview
We assume a given street scene image of buildings that comes with
geo-coordinates and angle of the camera by which the image is
taken. Here, the geo-coordinates may be imprecise due to GPS
errors. Google Street View images are examples of such images,
and we aim to compute the height of each building in the image.
As illustrated in Fig. 2, CBHE contains three stages:
• Stage 1 – Preprocessing: In the first stage, we pre-process the
input image by recognizing the buildings and computing their
sketches. There are many methods for these purposes. We use
two existing models RefineNet [24] and Structured Forest [12] to
identify the buildings and compute their sketches, respectively.
After this step, the input image will be converted into a grayscale
image with each pixel valued from 0 to 255 that contains building
sketches, which enables identifying rooflines and computing the
height of the building via camera projection.
• Stage 2 – Camera location calibration: Before computing
building height by camera projection, in the second stage, we
calibrate the camera location. This is necessary because a precise
camera location is required in the camera projection, while the
geo-coordinates that come with street scene images are imprecise
due to GPS errors. To calibrate the camera location, we first de-
tect building corner candidates in street scene images according

2438

B2

B1

h

 r

 f

 c
h'r

h'b
z'

x'

y'

d

Image plane coordinate system
Camera coordinate system (with prime)

hr

hb

o'
d

cz cn

cx

x

y

f
o

Figure 3: Geometric variables in the camera and the image
coordinate systems (best view in color).

to their footprints in 2D maps and their relative position to the
camera. Then, by comparing the locations and the projected po-
sitions of building corners (two corners), we calibrate the camera
location via camera projection. In this stage, we propose a deep
neural network named BuildingNet to determine whether an
image segment contains a valid building corner. The BuildingNet
model and the process of selecting two building corners for the
calibration are detailed in Section 4.
• Stage 3 – Building height computation: In this stage, we ob-
tain the roofline candidates of each building via weighted Hough
transform and filter out those invalid roofline candidates via
BuildingNet. Then we rank all valid rooflines by an entropy-
based ranking algorithm considering both corner and roofline
features and select the best one for computing building height via
camera projection. The detailed process is provided in Section 5.
Since Stage 1 is relatively straightforward, we focus on Stages

2 and 3 in the following Sections 4 and 5, respectively. Before
diving into these two stages, we briefly discuss the idea of camera
projection and present the frequently used symbols.

3.2 Camera projection
We use Fig. 3 to illustrate the idea of camera projection and the
corresponding symbols. In this figure, there are two coordinate
systems, i.e., the camera coordinate system and the image plane
coordinate system. Specifically, {o′, x ′, y′, z′} represent the camera
coordinate system, where origin o′ represents the location of the
camera. The camera is set horizontal to the sea level, which means
that plane x ′z′ is vertical to the building facades while the y′-axis
is horizontal to the building facades. We use {o, x , y} to represent
the image plane coordinate system, where origin o is the center of
the image, and plane xy is parallel to plane x ′y′.

In Fig. 3, there are two buildings B1 and B2 that have been pro-
jected onto the image. For each building, we use lr , lf , and lc to
represent the roofline, the floor, and the line on the building pro-
jected to the x-axis (center line) of the image plane xy. Corners
cn , cx , and cz are the corner nearest to the camera, the corner far-
thest to the y-axis of the image plane when projected to the image
plane (along the x-axis), and the corner closest to the y-axis of the
image plane when projected to the image plane (along the z-axis),
respectively. The height h of the building is the sum of the distance
between lr and lc and the distance between lc and lb . These two
distances are denoted as h′r and h′b , and the projected length of
h′r in the image plane xy is denoted by hr . Since the camera is set

Table 1: Frequently used symbols

Notation Description

hr the height of a building above images’ center line
hb the height of a building below images’ center line
d the distance from the camera to cn of a building
d̂ the projected length of d onto the z-axis
f the focal length of the camera
lr a building roofline
cn the corner nearest to the camera
cx the corner farthest to o in the image plane
cz the corner closest to o in the image plane

horizontal to the sea level, the height of h′b is the same as the height
of the car or human beings who captured the street scene image,
which can be regarded as a constant.

Let d be the distance from the camera o′ to corner cn , d̂ be the
projected length of d onto the z′-axis, and f be the focal length
of the camera (i.e., the distance between the image center o and
the camera center o′). Based on the pinhole camera projection, the
height of a building can be computed as follows:

h = h′r + h
′
b = hr · d̂/f + h

′
b (1)

In this equation, the focal length f comes with the input im-
age as its metadata. The distance d̂ is computed based on the geo-
coordinates of the building and the camera, aswell as the orientation
of the camera. The geo-coordinates of the building are obtained
from an open-sourced digital map, OpenStreetMap, while the geo-
coordinates and orientation of the camera come with the input
image from Google Street View. Due to GPS errors, we describe
how to calibrate the location of the camera in Section 4. The height
hr is computed based on the position of the roofline lr which is
discussed in Section 5. Table 1 summarizes the symbols that are
frequently used in the rest of the discussion.

4 CAMERA LOCATION CALIBRATION
When applying camera projection for building height estimation,
we need the distance d̂ between the building and the camera. Com-
puting this distance is based on the locations of both the building
and the camera. Due to the error of GPS, we calibrate the camera
location in this section.

4.1 Key Idea
We use two building corners in the street scene image with known
real-world locations for camera location calibration. To illustrate
the process, we project Fig. 3 to a 2D plane, as shown in Fig. 4a,
and assume that corner cn of building B1 and building B2 are two
reference corners.

We consider a coordinate system with corner cn of building B1
as the origin, and the camera orientation as the y-axis. Let θ1 and
θ2 be the angles of corner cn of B1 and corner cn of B2 from the
orientation of the camera, respectively. Then the ratio of d2/d3 is
determined by the position of these two reference corners in the
image. θ3 represents the angle between the line connecting corner
cn of B1 and corner cn of B2 and x-axis, and it can be computed

2439

(x,y)

(x’,y’)

(a) (b)
Figure 4: (a) geometric variables of Fig. 3 in plan view. (b)
the left building shows the formation of cn and cz , while the
right building illustrates how to find corner candidates.

according to the camera’s orientation and the relative locations of
the two reference corners in 2D maps. Therefore, we can compute
the coordinates (x ,y) of corner cn of building B2 in the coordinate
system. With θ1, θ2, and the coordinate (x ,y), we compute the y
coordinate of the camera as follows:

y′ =
x − y · tanθ1
tanθ1 + tanθ2

(2)

Since the x coordinate of the camera is equals to y′ · tanθ2,
we obtain the relative position of the camera to the corner cn of
building B1. Thus, camera location calibration becomes the problem
of matching two building corners with their positions in the image.

The real-world location of the building corners can be obtained
from 2D maps, and we need to locate their corresponding positions
in the street scene image based on the (inaccurate) geo-coordinates
of the camera. For a pinhole camera, matching a 3D point in the
real world to a 2D point in the image is determined by a 3×4 camera
projection matrix as follows:

α · p = [I |03]
[
R t

0T3 1

] [
p′

1

]
, I =

f 0 0
0 f 0
0 0 1

(3)

where a real-world point p′ = (x ′,y′, z′)T can be projected to its
position p = (x ,y, 1)T in the image plane; α is the parameter that
transfers pixel scale to millimeter scale [28]; [I |03] is the camera
matrix determined by focal length f ; R is the camera rotation ma-
trix, while t is a 3-dimensional translation vector that describes
the transformation from the real-world coordinates to the camera
coordinates.

Since the image geo-coordinates may be inaccurate, we can only
compute rough locations of the building corners. Based on the
rough position of each corner, we then iteratively assume a height
hr for each building to obtain the gradient of its rooflines, as shown
in Fig. 4b. We use 120×120 sub-images with the horizontal position
and the assumed height of the corner as their center for building
corner detection. A building corner consists of two rooflines or
a roofline with a building corner line, as shown in Fig. 4b. For
each building, we only consider their corners cn and cz . There are
three types of formation for corner cn as illustrated by the red lines
on the left-hand side building in Fig. 4b, and there is one type of
formation for corner cz as illustrated by the blue lines. Based on the
detected building corner candidates, we use BuildingNet described
Section 4.2 to filter out non-corner image segments, and then select
the two reference corners which is discussed in Section 4.2.

We assume the camera location error from Google Street View
API to be less than three meters due to its camera location optimiza-
tion [20]. If the camera location we compute is more than three
meters away from the one provided by Google Street View API, we
use the camera location from Google Street View API directly. We
further improve the estimation accuracy by a multi-sampling strat-
egy, which uses the median height among results from different
images of the same building taken at different distances.

4.2 BuildingNet
We formulate building corner detection as an object classification
problem, which first detects candidate corner regions for a spe-
cific building by a heuristic method, and then classifies them into
different types of corners or non-corners.

We classify images that may contain building corners into five
classes. The first four classes correspond to images containing one of
the four types of building corners, i.e., corner cn , cz of the left-hand
side buildings, and corner cn , cz of the right-hand side buildings (“
", “ ", “ ", “ "). The last class corresponds to non-corner images

which may contain any pattern except the above four types of
corners (e.g., they could contain trees, lamps or power lines), and
should be filtered out. Such a classification problem is an open
set problem in the sense that the non-corner images do not have
a unified pattern and will encounter unseen patterns. To solve
this classification problem, we build a classifier that only requires
samples of the first four classes in the training stage (can also take
advantage of non-corner images), while can handle all five classes
in the testing stage. To enable such a classifier, we first propose the
BuildingNet model based on LeNet 5 [22] and triplet loss functions,
which learns embeddings that map potential corner region image
segments to a Euclidean space where the embeddings have small
intra-class distances and large inter-class distances.

4.2.1 Triplet Relative Loss Function. As shown in Fig 5, an input
of BuildingNet contains three images. Two of them (xp and xt)
contain the same type of corner, and we name them the target
(xt) and positive (xp), respectively. The other image xn contains
another type of corners (or a non-corner image if available), and
we name it negative. BuildingNet trains its inputs to d-dimensional
embeddings based on a triplet relative loss function inspired by
Triplet-Center Loss and FaceNet [17, 35, 40, 43], which minimizes
the distances within the same type of corners, and maximizes the
distances between different types of corners as follows:

l =
N∑
i=1

α · | | f (xti) − f (x
p
i) | |

2
2 + (1 − α) ·

| | f (xti) − f (x
p
i) | |

2
2

| | f (xti) − f (xni) | |
2
2

(4)

where α ∈ [0, 1] is the weight of intra-class distance in the d-
dimensional Euclidean space; (1 − α) is the weight of the ratio
between intra-classes distance and inter-class distance, which aims
to separate different classes in the d-dimensional Euclidean space;
N is the cardinality of all input triplets. Function f computes the
d-dimensional embedding of an input image, and we normalize
it to | | f (x) | |22 = 1. Different from existing loss function based on
triplet selection [35, 42], triplet relative loss function can minimise
the intra-class distance and maximize the inter-class distance by
means of their relative distance.

2440

Figure 5: BuildingNet structure. xt , xp are images contain-
ing the same corner type. xn is an image containing another
corner type or non-corner, x is a testing image.

4.2.2 Hard Triplet Selection. Generating all possible image triplets
for each batch during the training process will result in a large
amount of unnecessary training data (e.g., xt and xp are too similar,
while xn is way different). It is crucial to select triplets that con-
tribute more to the training phase. In BuildingNet, we accelerate
convergence by assigning a higher selection probability to triplets
that may contribute more to the training process. The probability
of selecting a negative image xni to form a training triplet is:

p (xni) =
e | |f (x

n
i)−f (x

t) | |22−m∑k
i=1 e

| |f (xni)−f (x
t) | |22−m

, i = [1,k]

m =min(| | f (xni) − f (xt) | |22 − || f (x
t) − f (xp) | |22), i = [1,k]

(5)

Here, k is the total number of negative images in a batch. Af-
ter randomly choosing xt and xp for a triplet, we compute the
Euclidean distance between xt and xp , as well as the distances
between xt and the k negative images xn in the batch. Letm be the
minimum Euclidean distance between xt and any xn , which can
be positive or negative. Then, the negative image xni similar to xt
will have a higher probability to be selected.

After the training process, we obtain a d-dimensional embedding
for each input image. We then learn a support vector classifier [8]
based on these embeddings for corner region image classification.

4.3 Entropy-based Ranking
BuildingNet can filter out non-corner images. Among the remain-
ing corner candidates, we select the two corners with the highest
score as the reference corners. Reference corner selection relies on
multiple factors: the length and edgeness (detailed in Section 5) of
the lines forming the corner, the number of other corner candidates
(cn , cx , and cz) of the same building with the same assumed height,
and the position of the corner in the image. We take the position of
the corner into consideration because, empirically, corners close
to one quarter or three-quarters (horizontally) of the image yield
more accurate matching between their positions in the image and
their footprints in 2D maps. We also consider their real-world lo-
cations because a corner close to the camera will be clearer and
has higher accuracy when matching them to their footprints in 2D
maps. Therefore, we define the score of each corner candidate as:

[sc1 , ..., sck]
′ =

λ,ω,τ , ρ,d |c1
...

λ,ω,τ , ρ,d |ck

·

wλ
...

wd

(6)

where k is the number of corner candidates from all buildings; ci is
the ith corner candidate; sci is the score of the ith corner candidate;
λ is the detected length of the two lines that form a corner, while ω
is the sum of the edgeness of the two lines; τ is the number of other
corner candidates of the same building with the same assumed
height; ρ is the minimum distance from the corner to a quarter or
three-quarters of the image, and d is the distance from the corner to
the camera;wλ ,wω ,wτ ,wρ ,wd are the weight of these parameters.
Parameters λ,ω,τ and ρ correlate with the score positively, while
parameter d correlates with the score negatively.

We use an entropy-based rankingmethod to compute theweights
of parameters (wλ , ...,wd)

T . Shannon entropy is a commonly used
measurement of uncertainty in information theory [38]. The main
idea of the entropy-based ranking algorithm is to compute the
objective weights of different parameters according to their data
distribution. If the samples of a parameter vary greatly, the param-
eter should be considered as a more important feature and thus
should be given a larger weight.

For building corner classification, there are n = 5 parameters and
m = k samples. We denote the decision matrix as r , where ri j is the
value of the ith sample under the jth parameter. Before applying the
entropy-based ranking algorithm, we pre-process these parameters
by Min-max scaling as follows:

ri j =

(ri j −min
j
(ri j))/(max

j
(ri j) −min

j
(ri j)), iff positive

(ri j −min
j
(ri j))/(max

j
(ri j) −min

j
(ri j)) + 1, iff negative

(7)
where positive and negative mean that the jth parameter is pos-
itively/negatively correlated with the value of r . After Min-max
scaling, the entropy of each parameter based on the normalized
decision matrix r ′ is defined as:

ej = −ln(m)−1 ·
m∑
j=1

r ′i j · ln(r
′
i j), r

′
i j = ri j/

m∑
j=1

ri j (8)

where r ′ is the standardized r . Based on the entropy of each param-
eter, the weight of each parameter is computed by:

w j = (1 − ej)/(n −
m∑
j=1

ej), j = [1,n] (9)

After computing the weight of each parameter, we apply them
to all corner candidates and rank all the candidates by their scores
to obtain the best two as the reference corners.

5 ROOFLINE DETECTION
Building height estimation requires detecting the roofline of each
building. In this section, we present our method for roofline candi-
date detection in Section 5.1, and our method for the true roofline
selection in Section 5.2. We further present a strategy for handling
tall building (over 100 meters) in Section 5.3.

5.1 Roofline Candidate Detection
We consider the rooflines from corner cn to the corner next to cn ,
along the positive direction of the x ′-axis in the camera coordinate
system, and the one from corner cz to the corner next to corner cz

2441

(a) (b)
Figure 6: (a) the heuristic method for roofline candidate de-
tection. (b) the mask of detected buildings.

along the negative direction of the z′-axis in the camera coordinate
system. The corner between corner cz and corner cx is corner cn
if they are adjacent to each other, as shown in Fig. 3, and we take
this situation to simplify the explanation.

Similar to corner candidate detection, as shown in Fig. 6a, we
find all roofline candidates of each building by a heuristic method,
which projects the rooflines of each building according to its relative
location to the camera in the real world, together with the camera’s
parameters. To do so, we first assume hr of a building to be the
maximum height that can be captured, which means that at least a
roof corner (cn , cx , and cz) is visible in the image. If corner cn is
visible, the maximum height computed via camera projection is:

hr = d̂ · (hI /2f) (10)

where hI is the height of the street scene image; d̂ is the distance
from corner cn to the camera projected to the z′-axis of the camera
coordinate system. If corner cn is invisible, we use cz as the refer-
ence corner when computing the maximum height of a building
in the same way. With the maximum height of the building, we
compute the position of corner cn , cx , and cz in the image. We
then apply Hough transform to the input edge map in Fig. 2 to
detect roofline candidates, and the roofline candidates from cn to
cx need to match the computed position of cn and cx . Similarly,
the roofline candidates from cn to cz need to match the computed
position of cn and cz . Instead of using the typical Hough transform
for line detection, which takes binarized images as the input, we
sum the value of all pixels valued from 0 to 255 within a line as its
weight, and name the summed value as the edgeness of a roofline
candidate, which reflects the visibility of a line in the edge map.

We iteratively reduce the assumed height with a step length of
0.5 meters until hr = 0 and collect all candidate rooflines. Similar to
reference corner detection, we formulate the true building roofline
detection as an open set classification and ranking problem.

5.2 Roofline Classification and Ranking
There are three types of rooflines: (i) Roofline from cn to cx ; (ii)
Roofline from cn to cz of the left hand side buildings; (iii) Roofline
from cn to cz of the right hand side buildings, as shown in Fig. 4c.
We use BuildingNet to filter these candidates and find the true
roofline, which is similar to the corner candidate validation process
in Section 4.2. Based on the valid roofline candidates from Build-
ingNet, we weight each roofline candidate lr by its detected length
λ, edgeness ω, and the number of corners τ with the same assumed

Algorithm 1: Roofline pre-processing
Inputs: buildings B, tree area T , edge map E;
Output: updated buildings B;
M = null;
forall building b in B do

// buildings are ordered by whether they have a detectable
corner, and then their distance to the camera;
forall roofline lr in b .Lr do

// traverse all roofline candidates of building b;
forall pixel p ∈ lr do

if M (p) then
lr .delete(p);

lr (ini) = lr ;
forall pixel p in lr and p < lr and !M (p) do

if connected (p, lr) and T (p) then
lr .add(p);

// update the length and edgeness of lr ;
λlr = len(lr);
ωlr = E (lr (ini)) ∗ len(lr)/len(lr (ini));

height of the same building. We rank all roofline candidates via the
entropy-based ranking algorithm in Section 4.3, as follows:

[slr1 , ..., slrk]
′ =

λ,ω,τ |lr1
...

λ,ω,τ |lrk

·

wλ |lr
...

wτ |lr

(11)

where k is the number of roofline candidates for a specific roofline;
lri is the ith roofline candidate; slr1 is the score of the ith roofline
candidate.wλ ,wω andwτ are the weight of these parameters based
on all candidates of a specific roofline of a building, and all three
parameters are positively correlated with the score s . The value of
τ depends on the number of corners (cn , cx , and cz) with the same
assumed height as the roofline candidate, and its value is {0, 1, 2, 3}.
We discussed how to detect references corners in Section 4.2, and
the difference in detecting the corners of a specific building is that
we do not consider ρ and d in Equation 6 and all corner candidates
here are those of a specific building corner.

Different from building corners, which can only be visible or in-
visible, rooflines can also be partially blocked by other objects (trees
in particular). Therefore, before we apply the ranking algorithm,
we pre-process the length λ and edgeness ω which are affected by
the blocking via Algorithm 1 as follows:

When estimating building height, we first separate buildings into
two classes: (i) with at least one valid corner; (ii) without any valid
corner. Then, we process buildings in class (i) according to their
distance to the camera. After all the buildings in class (i) have been
processed, we process the buildings in class (ii) according to their
distance to the camera. After we obtain the height of a building, we
mark the scope of the building in the street scene image, as shown
in Fig. 6b (i.e., height has been obtained).

After detecting the roofline candidates of a building, we refine
the λlr of each roofline candidate using the following equation:

2442

(a) (b)
Figure 7: (a) an image with an upward-looking view. (b) the
corresponding image with a horizontal view.

λlr = λlr (ini) −
∑
p∈lr

M (p) +
∑

p in lr

T (p) (12)

where λlr (ini) is the detected length of a roofline candidate lr .M (p)
checks whether a pixel p within a roofline belongs to a building’s
scope in the street scene image that has been processed and closer
to the camera, or within another building’s roofline that has been
processed but farther to the camera. We remove pixel p from a
roofline if M (p) is true. T (p) checks whether a pixel p, which is
in the extended line of lr but within the projected scope of the
roofline, has been blocked by trees. If there do exist these pixels
and they connect to the detected roofline segment, we add them to
the roofline. Accordingly, we update the edgeness of a roofline as:

ωlr = (1 + λlr (ini)/λlr) ·
∑
p∈lr

E (p) · (1 −M (p)) (13)

where E is the input edge map of the original image, λlr (ini) and
λlr are the initial and prolonged length of the roofline, respectively.

5.3 Tall Building Preprocessing
Height estimation for tall buildings (over 100 meters) requires the
camera to be placed far away from the buildings with an upward-
looking view to capture the building roof. For images with an
upward-looking view, all building corner lines will become slanted.
Typically, we take the upward-looking view as 25 degrees as an
example to show the strategy that we use for handling tall buildings.

We first compute a plane-to-plane homography [51], whichmaps
an image with an upward-looking view to the corresponding im-
age with a horizontal view. Here, we use the homogeneous esti-
mation method [10], which solves a 3×3 homogeneous matrix h
that matches a point in an upward-looking image (Fig. 7a) to a
horizontal-view image (Fig. 7b) using the Equation 14:

A · h =

x1 y1 1 0 0 0 −x1X1 −y1Y1 X 1
0 0 0 x1 y1 1 −x1X1 −y1Y1 X 1
...
...
...
...
...
...
...

...
...

xn yn 1 0 0 0 −xnXn −ynYn Xn
0 0 0 xn yn 1 −xnXn −ynYn Xn

· h = 0 (14)

where the homogeneous matrix h(|h | = 1) is represented in the
vector form as h = (h11,h12,h13,h21,h22,h23,h31,h32,h33)T ; n is
the number of point pairs, which should be no less than four to
validate the homogeneous equation; (Xi ,Yi) represents a point in
the upward-looking image and (xi ,yi) represents the correspond-
ing point in the resultant image with a horizontal view. Vector h
minimizes the algebraic residuals, and A · h is a standard result of

Figure 8: Examples of four types of corners, three types of
rooflines, and the corresponding unlabelled images.

linear algebra. Subject to h = 1, the least eigenvalue of A · AT is
given by the eigenvector, and this eigenvector can be obtained from
the singular value decomposition (SVD) of A.

6 EXPERIMENTS
In this section, we first evaluate our proposed BuildingNet model
for building corner and roofline classification and then evaluate our
proposed CBHE algorithm for building height estimation.

6.1 Datasets
In our experiments, we obtain building footprints (geo-coordinates)
from OpenStreetMap and building images from Google Street View,
respectively. For the experiments on building height estimation, we
use two datasets:

(i) City Blocks, which contains 128 buildings in San Francisco.
We collect all Google Street View images (640×640 pixels) with cam-
era orientation along the street. We set the view of the camera is 90
degrees, and the focal length can be derived via the camera param-
eters provided by Google. We do not need to consider the camera
rotation matrix R and the translation vector t due to the image
preprocessing of Google Street View. We obtain the building height
ground truth from high-resolution aerial maps (e.g., NearMap [13]).

(ii) Tall Buildings, which contains 37 buildings taller than 100
meters in San Francisco, Melbourne, and Sydney collected by us
via Google Street View API. We set the camera with an upward-
looking view (25 degrees) to capture their rooflines. The building
hight ground truth comes from Wikipedia pages of these buildings
or derived from NearMap [13].

For building corner classification, we crop images from City
Blocks dataset. We generate the corner dataset semi-automatically,
where we crop 28 × 28 pixels image segments from street scene im-
ages, and then manually label whether an image segment contains
a building corner (and the type of corner). The training dataset that
we collected contains 10,400 images, including 1,300 images of each
type of building corner (i.e., a total of 5,200 building corner images)
and 5,200 non-corner images. The testing dataset contains 1,280
images, including 160 images for each type of building corners and
640 non-corner images. The training data and testing data come
from different city blocks.

Following a similar approach, we collect a roofline dataset. For
each roofline candidate, we extend the upper and lower 10 pixels
of the roofline to obtain a 21 ×W image segments, whereW is the
length of the roofline, and we further resize (rotate if the roofline
is not a horizontal line) the image to 28 × 28 to generate same-size
inputs for BuildingNet. The training dataset includes 7,800 images,
including 1,300 images for each type of rooflines (i.e., a total of

2443

(a) (b)
Figure 9: Effectiveness of BuildingNet on (a) corner classifi-
cation and (b) roofline classification (best view in color).

3,900 building roofline images) and 3,900 non-roofline images. The
testing dataset contains 960 images, including 160 images for each
kind of roofline and 480 non-roofline images.

6.2 Effectiveness of BuildingNet
Building corner and roofline classification is an open set classifica-
tion problem where the invalid corner or roofline candidates do not
have consistent features. To test the effectiveness of BuildingNet,
we use two open set classifiers as the baselines: SROSR [49] and
OpenMax [6]. SROSR uses the reconstruction errors for classifica-
tion. It simplifies the open set classification problem into testing and
analyzing a set of hypothesis based on the matched and no-matched
error distributions. OpenMax handles the open set classification
problem by estimating the probability of whether an input comes
from unknown classes based on the last fully connected layer of a
neural network. Further, we use two loss functions based on triplet
selection to illustrate the effectiveness of our proposed triplet rel-
ative loss function. The loss function in FaceNet [35] makes the
intra-class distance smaller than inter-class distance by adding a
margin, and the one in MSML [45] optimizes the triplet selection
process towards selecting hard triplets in each in training.

Hyperparameters. For the OpenMax, we use the LeNet 5model
to train on the building corner and roofline dataset for 10K iterations
with the default setting in Caffe [19]. We then apply the last fully
connected layer to OpenMax for classification. For our BuildingNet,
we pre-train LeNet 5 with the MNIST dataset and fine-tune it with
our collected building corner and roofline images. Further, since
BuildingNet can also take advantage of unlabeled data (known
unknown [34]) during training, we also pre-train a LeNet 5 model
based on MNIST dataset (0 to 4 as the labeled data and 5 to 9 as the
unlabeled data) and fine-tune it with our data. We set the learning
rate as 0.1 with the decay rate of 0.95 after each 1K iterations
(50K iterations in total). The batch size is 30 images for each class,
the embeddings that BuildingNet learns are 128-dimensional, and
the α in the triplet relative loss function is 0.5. We perform 10-
fold cross-validation on the models tested, and then compute the
accuracy, precision, recall, and F1 score of different models, which
are summarized in Figure 9.

On the corner dataset, BuildingNet achieves an accuracy of
94.34%, and its recall, precision, and F1 score are all over 91% when
using both labeled and unlabeled data for training. Compared with
SROSR and OpenMax, BuildingNet improves the accuracy and F1
score by more than 6% and 10%, respectively. When trained with

(a) (b) (c)
Figure 10: t-SNE [27] 2D embeddings of four types of cor-
ners and the unlabeled data after 100 epochs, learned by the
loss functions in (a) FaceNet, (b) MSML, and (c) the proposed
triplet relative loss (best view in color).

labeled data only, BuildingNet still has the highest accuracy and
F1 score (i.e., 88.72% and 81.8%), which are 1.1% and 2% higher
than OpenMax, respectively. Compared with the two loss functions
in MSML and FaceNet which are also based on triplet selection,
our proposed loss function can improve the accuracy and F1 score
by more than 0.4% and 0.5%, respectively. For the roofline dataset,
the proposed BuildingNet again outperforms the baseline models
consistently. These confirm the effectiveness of BuildingNet.

To further illustrate the effectiveness of BuildingNet, we visualize
the embeddings generated by three triplet based loss functions on
the corner dataset, as shown in Fig. 10. Compared with random
triplet selection with margin (FaceNet) and hard triplet selection
with margin (MSML), our triplet relative loss function obtains better
classification result with smaller average intra-class distance and
larger average inter-class distance after the same number of epochs.

6.3 Effectiveness of CBHE
We evaluate the performance of CBHE on City Blocks and Tall
Buildings in this subsection.

6.3.1 Building height estimation on City Blocks. Figure 11 shows
the building high estimation errors of the baseline method [46]
and CBHE over the City Blocks dataset. It shows the percentage
of buildings where the height estimation is greater than 2, 3, and 4
meters, respectively. In both city blocks, CBHE achieves a smaller
percentage of buildings than that of the baseline [46].

In particular, in the first city block (Fig. 11a, which has been used
in [46]), CBHE has 10.4%, 5.5%, and 1.2% fewer buildings than those
of the baseline with height estimation errors greater than 2, 3, and
4 meters, respectively. Note that the results of the baseline method
are obtained from their paper [46] since we are unable to obtain

(a) City block 1 (b) City block 2
Figure 11: The errors of the baseline method [46] and CBHE
on City Blocks.

2444

(a) Images used by the baseline (b) Images used by CBHE
Figure 12: City block street scene images at the same spots.

their source code. Also, even though CBHE is run on the same city
block as the baseline in this set of experiments, the images that
we used are more challenging to handle as the trees in the street
scenes have grown larger which block the buildings (cf. Fig. 12).

Fig 11b shows the result in a second city block (which was not
used in [46]). As we are unable to obtain the source code of the
baseline method, the result is based on our implementation of their
method. CBHE again outperforms the baseline. It has 11.5%, 4.8%,
and 5% fewer buildings than those of the baseline with height
estimation errors greater than 2, 3, and 4 meters, respectively.

6.3.2 Building height estimation on Tall Buildings. For tall buildings,
the camera needs to be placed far away with an upward-look view
to capture the building roofline. We capture the building images
250 meters away from the buildings via Google Street View API.
Fig. 13 presents examples of the street scene images for tall building
height estimation. For each street scene image, we first rotate it to
the horizontal view according to Equation 14, and then compute
the height of the buildings according to Section 5.

Figure 13: Tall building examples (best view in color).

The baseline method [46] cannot be applied to tall buildings, and
here we only show the result of CBHE. As shown in Table 2, more
than 53% of the tall buildings have a height estimation error of less
than five meters and 73.33% of the tall buildings have an error of
less than 10 meters.

Table 2: CBHE for tall building height estimation.

Absolute error Percentage Relative Error Percentage

>5m 45.9% >5% 40.5%
>10m 27.0% >10% 13.5%

The errors of tall buildings may seem larger due to the camera
projection (i.e., the errors aremultiplied by a largermultiplier for tall
buildings). However, we would like to emphasize that the relative
errors are still quite low, e.g., since the tall buildings are taller than
100 meters, even a 10-meter error is less than 10% and is barely
notable in reality.

(a) (b) (c) (d)
Figure 14: Challenging examples (best view in color).

6.4 Error Analysis
We summarize the challenging cases for CBHE in this section. These
challenging scenarios will be explored in future work.

For those buildings whose rooflines are entirely blocked by other
objects such as trees, CBHE will ignore them, or output a wrong
estimation. Take Fig. 14a as an example, the trees on the left-hand
side of the image block the roof of the green colored building heavily,
resulting in a line below the roof to be identified as the roofline.
Additionally, if the corners of a building are not detectable, lines
from other buildings behind this building may also impact the result.
As illustrated in Fig. 14b, the roofline of a building behind the blue
colored building was detected as its roofline.

In dense city areas, the buildings may overlap with each other,
and it is difficult to match all buildings with their boundaries in
a 2D map accurately. Take Fig. 14c as an example, building 2⃝ is
blocked by building 1⃝ and building 2⃝’s corners have a similar
horizontal position to building 5⃝. Therefore, CBHE regards the
rooflines of building 5⃝ as the rooflines of building 2⃝, which results
in the estimated height of building 2⃝ being 77.41m, although its real
height is 24.53m. Moreover, the height of building 5⃝ is also wrong
because the incorrect rooflines of building 2⃝ block the rooflines
of building 5⃝. In Fig. 14d, the blue shaded building mask on the
right-hand side is wrongly assigned to the building 2⃝ (between
building 1⃝ and building 3⃝) because it is closer to the camera with
the similar position to building 3⃝.

7 CONCLUSIONS
We proposed a corner-based algorithm named CBHE to learn build-
ing height from complex street scene images. CBHE consists of cam-
era location calibration and building roofline detection as its two
main steps. To calibrate camera location, CBHE performs camera
projection by matching two building corners in street scene images
with their physical locations obtained from a 2D map. To identify
building rooflines, CBHE first detects roofline candidates according
to the building footprints in 2D maps and the calibrated camera
location. Then, it uses a deep neural network named BuildingNet
that we proposed to check whether a roofline candidate indeed is a
building roofline. Finally, CBHE ranks the valid rooflines based on
an entropy-based ranking algorithm, which also involves building
corner information as an essential indicator, and then computes
the building height through camera projection. Experimental re-
sults show that the proposed BuildingNet model outperforms two
state-of-the-art classifiers SROSR and OpenMax consistently, and
CBHE outperforms the baseline algorithm by over 10% in building
height estimation accuracy.

2445

8 ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback. We appreci-
ate the valuable discussion with Bayu Distiawan Trsedya, Weihao
Chen, and Jungmin Son. Yunxiang Zhao is supported by the Chinese
Scholarship Council (CSC). This work is supported by Australian
Research Council (ARC) Discovery Project DP180102050, Google
Faculty Research Award, and the National Science Foundation of
China (Project No. 61402155).

REFERENCES
[1] Pratik Agarwal,WolframBurgard, and Luciano Spinello. 2015. Metric Localization

using Google Street View. In IEEE/RSJ International Conference on Intelligent
Robots and Systems. 3111–3118.

[2] Dragomir Anguelov, Carole Dulong, Daniel Filip, Christian Frueh, Stéphane
Lafon, Richard Lyon, Abhijit Ogale, Luc Vincent, and Josh Weaver. 2010. Google
Street View: Capturing the World at Street Level. Computer 43, 6 (2010), 32–38.

[3] Anil Armagan, Martin Hirzer, Peter M. Roth, and Vincent Lepetit. 2017. Learning
to Align Semantic Segmentation and 2.5D Maps for Geolocalization. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 4590–4597.

[4] Clemens Arth, Christian Pirchheim, Jonathan Ventura, Dieter Schmalstieg, and
Vincent Lepetit. 2015. Instant Outdoor Localization and SLAM Initialization from
2.5D Maps. IEEE Transactions on Visualization and Computer Graphics 21, 11
(2015), 1309–1318.

[5] Baidu. 2018. Baidu Map. Retrieved Oct 18, 2018 from https://map.baidu.com/#
[6] Abhijit Bendale and Terrance E. Boult. 2016. Towards Open Set Deep Networks. In

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1563–1572.
[7] Dominik Brunner, Guido Lemoine, Lorenzo Bruzzone, and Harm Greidanus.

2010. Building Height Retrieval from VHR SAR Imagery based on an Iterative
Simulation and Matching Technique. IEEE Transactions on Geoscience and Remote
Sensing 48, 3 (2010), 1487–1504.

[8] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A Library for Support
Vector Machines. ACM Transactions on Intelligent Systems and Technology (TIST)
2, 3 (2011), 27.

[9] Hang Chu, Andrew Gallagher, and Tsuhan Chen. 2014. GPS Refinement and
Camera Orientation Estimation from a Single Image and a 2D Map. In IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
171–178.

[10] Antonio Criminisi. 1997. Computing the Plane to Plane Homography.
[11] Elkin Díaz and Henry Arguello. 2016. An Algorithm to Estimate Building Heights

fromGoogle Street-view Imagery using Single ViewMetrology across a Represen-
tational State Transfer System. In Dimensional Optical Metrology and Inspection
for Practical Applications V, Vol. 9868. 98680A.

[12] Piotr Dollár and C. Lawrence Zitnick. 2013. Structured Forests for Fast Edge
Detection. In IEEE International Conference on Computer Vision (ICCV). 1841–
1848.

[13] Google. 2018. NearMap. Retrieved Nov 4, 2018 from http://maps.au.nearmap.
com/

[14] Floraine Grabler, Maneesh Agrawala, Robert W. Sumner, and Mark Pauly. 2008.
Automatic Generation of Tourist Maps. ACM Transactions on Graphics (TOG) 27,
3 (2008), 100:1–100:11.

[15] Andreas Grammenos, Cecilia Mascolo, and Jon Crowcroft. 2018. You Are Sensing,
but Are You Biased?: A User Unaided Sensor Calibration Approach for Mobile
Sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 2, 1 (2018), 11.

[16] Mordechai Haklay and Patrick Weber. 2008. OpenStreetMap: User-Generated
Street Maps. IEEE Pervasive Computing 7, 4 (2008), 12–18.

[17] Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and Xiang Bai. 2018. Triplet-
Center Loss for Multi-View 3D Object Retrieval. arXiv preprint arXiv:1803.06189
(2018).

[18] Mohammad Izadi and Parvaneh Saeedi. 2012. Three-Dimensional Polygonal
Building Model Estimation from Single Satellite Images. IEEE Transactions on
Geoscience and Remote Sensing 50, 6 (2012), 2254–2272.

[19] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolu-
tional Architecture for Fast Feature Embedding. In Proceedings of the 22nd ACM
international conference on Multimedia. 675–678.

[20] Bryan Klingner, David Martin, and James Roseborough. 2013. Street ViewMotion-
from-Structure-from-Motion. In IEEE International Conference on Computer Vision
(ICCV). 953–960.

[21] Johannes Kopf, Billy Chen, Richard Szeliski, and Michael Cohen. 2010. Street
Slide: Browsing Street Level Imagery. In ACM Transactions on Graphics (TOG),
Vol. 29. 96.

[22] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
Based Learning Applied to Document recognition. Proc. IEEE 86, 11 (1998),

2278–2324.
[23] Gregoris Liasis and Stavros Stavrou. 2016. Satellite Images Analysis for Shadow

Detection and Building Height Estimation. ISPRS Journal of Photogrammetry and
Remote Sensing 119 (2016), 437–450.

[24] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian D. Reid. 2017. RefineNet:
Multi-Path Refinement Networks for High-Resolution Semantic Segmentation. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 5168–5177.

[25] Liu Liu, Hongdong Li, and Yuchao Dai. 2017. Efficient Global 2D-3D Matching for
Camera Localization in a Large-Scale 3D Map. In IEEE International Conference
on Computer Vision (ICCV). 2391–2400.

[26] Xiuwen Liu and DeLiang Wang. 2002. A Spectral Histogram Model for Texton
Modeling and Texture Discrimination. Vision Research 42, 23 (2002), 2617–2634.

[27] Laurens Van Der Maaten and Geoffrey Hinton. 2008. Visualizing Data Using
T-SNE. Journal of Machine Learning Research 9, Nov (2008), 2579–2605.

[28] Trish Meyer and Chris Meyer. 2010. Creating Motion Graphics with After Effects.
Taylor & Francis.

[29] Edward Ng. 2009. Policies and Technical Guidelines for Urban Planning of High-
Density Cities–Air Ventilation Assessment (AVA) of Hong Kong. Building and
Environment 44, 7 (2009), 1478–1488.

[30] Jiyan Pan, Martial Hebert, and Takeo Kanade. 2015. Inferring 3D Layout of
Building Facades from a Single Image. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2918–2926.

[31] Feng Qi, John Z Zhai, and Gaihong Dang. 2016. Building Height Estimation using
Google Earth. Energy and Buildings 118 (2016), 123–132.

[32] Adam Rousell and Alexander Zipf. 2017. Towards a Landmark-Based Pedes-
trian Navigation Service using OSM Data. ISPRS International Journal of Geo-
Information 6, 3 (2017), 64.

[33] Aparajithan Sampath and Jie Shan. 2010. Segmentation and Reconstruction of
Polyhedral Building Roofs from Aerial Lidar Point Clouds. IEEE Transactions on
Geoscience and Remote Sensing 48, 3 (2010), 1554–1567.

[34] Walter J Scheirer, Lalit P Jain, and Terrance E Boult. 2014. Probability Models
for Open Set Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 36, 11 (2014), 2317–2324.

[35] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A Unified
Embedding for Face Recognition and Clustering. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 815–823.

[36] Gunho Sohn, Xianfeng Huang, and Vincent Tao. 2008. Using a Binary Space
Partitioning Tree for Reconstructing Polyhedral Building Models from Airborne
Lidar Data. Photogrammetric Engineering & Remote Sensing 74, 11 (2008), 1425–
1438.

[37] Hélène Sportouche, Florence Tupin, and Léonard Denise. 2011. Extraction and
Three-Dimensional Reconstruction of Isolated Buildings in Rrban Scenes from
High-Resolution Optical and SAR Spaceborne Images. IEEE Transactions on
Geoscience and Remote Sensing 49, 10 (2011), 3932–3946.

[38] Li-yan Sun, Cheng-lin Miao, and Li Yang. 2017. Ecological-Economic Efficiency
Evaluation of Green Technology Innovation in Strategic Emerging Industries
based on Entropy Weighted TOPSIS Method. Ecological Indicators 73 (2017),
554–558.

[39] Frederik Tack, Gurcan Buyuksalih, and Rudi Goossens. 2012. 3D Building Recon-
struction based on Given Ground Plan Information and Surface Models Extracted
from Spaceborne Imagery. ISPRS Journal of Photogrammetry and Remote Sensing
67 (2012), 52–64.

[40] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi. 2018. KDGAN: Knowl-
edge Distillation with Generative Adversarial Networks. In Advances in Neural
Information Processing Systems (NIPS). 783–794.

[41] Zhuang Wang, Libing Jiang, Lei Lin, and Wenxian Yu. 2015. Building Height
Estimation from High Resolution SAR Imagery via Model-Based Geometrical
Structure Prediction. Progress In Electromagnetics Research 41 (2015), 11–24.

[42] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. 2006. Distance Metric
Learning for Large Margin Nearest Neighbor Classification. In Advances in Neural
Information Processing Systems (NIPS). 1473–1480.

[43] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. 2016. A Discriminative
Feature Learning Approach for Deep Face Recognition. In European Conference
on Computer Vision (ECCV). 499–515.

[44] WordPress and HitMag. 2018. LIDAR and RADAR Information. Retrieved Aug
9, 2018 from http://lidarradar.com/category/info

[45] Qiqi Xiao, Hao Luo, and Chi Zhang. 2017. Margin Sample Mining Loss: A
Deep Learning Based Method for Person Re-identification. arXiv preprint
arXiv:1710.00478 (2017).

[46] Jiangye Yuan and Anil M. Cheriyadat. 2016. Combining Maps and Street Level
Images for Building Height and Facade Estimation. InACM SIGSPATIALWorkshop
on Smart Cities and Urban Analytics. 8:1–8:8.

[47] Paul A. Zandbergen and Sean J. Barbeau. 2011. Positional Accuracy of Assisted
GPS Data from High-Sensitivity GPS-Enabled Mobile Phones. The Journal of
Navigation 64, 3 (2011), 381–399.

[48] Chuiqing Zeng, Jinfei Wang, Wenfeng Zhan, Peijun Shi, and Autumn Gambles.
2014. An Elevation Difference Model for Building Height Extraction from Stereo-
Image-Derived DSMs. International Journal of Remote Sensing 35, 22 (2014),

2446

https://map.baidu.com/#
http://maps.au.nearmap.com/
http://maps.au.nearmap.com/
http://lidarradar.com/category/info

7614–7630.
[49] He Zhang and Vishal M. Patel. 2017. Sparse Representation-Based Open Set

Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 39, 8 (2017), 1690–1696.

[50] Rui Zhang. 2017. Geographic Knowledge Base (2017): http://www.ruizhang.info/
GKB/gkb.htm.

[51] Zhengyou Zhang. 2000. A Flexible New Technique for Camera Calibration. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 22, 11 (2000),
1330–1334.

2447

http://www.ruizhang.info/GKB/gkb.htm
http://www.ruizhang.info/GKB/gkb.htm

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Zhao, Y; Qi, J; Zhang, R

Title:

CBHE: Corner-based building height estimation for complex street scene images

Date:

2019-05-13

Citation:

Zhao, Y., Qi, J. & Zhang, R. (2019). CBHE: Corner-based building height estimation for

complex street scene images. Liu, L (Ed.) White, R (Ed.) WEB CONFERENCE 2019:

PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), pp.2436-

2447. ACM. https://doi.org/10.1145/3308558.3313394.

Persistent Link:

http://hdl.handle.net/11343/225731

File Description:

Published version

	Abstract
	1 Introduction
	2 Related Work
	2.1 Camera Location calibration
	2.2 Building Height Estimation

	3 Overview of CBHE
	3.1 Solution Overview
	3.2 Camera projection

	4 Camera Location Calibration
	4.1 Key Idea
	4.2 BuildingNet
	4.3 Entropy-based Ranking

	5 Roofline Detection
	5.1 Roofline Candidate Detection
	5.2 Roofline Classification and Ranking
	5.3 Tall Building Preprocessing

	6 Experiments
	6.1 Datasets
	6.2 Effectiveness of BuildingNet
	6.3 Effectiveness of CBHE
	6.4 Error Analysis

	7 Conclusions
	8 acknowledgments
	References

