338 research outputs found
A topological approach to non-Archimedean Mathematics
Non-Archimedean mathematics (in particular, nonstandard analysis) allows to
construct some useful models to study certain phenomena arising in PDE's; for
example, it allows to construct generalized solutions of differential equations
and variational problems that have no classical solution. In this paper we
introduce certain notions of non-Archimedean mathematics (in particular, of
nonstandard analysis) by means of an elementary topological approach; in
particular, we construct non-Archimedean extensions of the reals as appropriate
topological completions of . Our approach is based on the notion of
-limit for real functions, and it is called -theory. It can
be seen as a topological generalization of the -theory presented in
\cite{BDN2003}, and as an alternative topological presentation of the
ultrapower construction of nonstandard extensions (in the sense of
\cite{keisler}). To motivate the use of -theory for applications we
show how to use it to solve a minimization problem of calculus of variations
(that does not have classical solutions) by means of a particular family of
generalized functions, called ultrafunctions.Comment: 22 page
On the Dynamics of solitons in the nonlinear Schroedinger equation
We study the behavior of the soliton solutions of the equation
i((\partial{\psi})/(\partialt))=-(1/(2m)){\Delta}{\psi}+(1/2)W_{{\epsilon}}'({\psi})+V(x){\psi}
where W_{{\epsilon}}' is a suitable nonlinear term which is singular for
{\epsilon}=0. We use the "strong" nonlinearity to obtain results on existence,
shape, stability and dynamics of the soliton. The main result of this paper
(Theorem 1) shows that for {\epsilon}\to0 the orbit of our soliton approaches
the orbit of a classical particle in a potential V(x).Comment: 29 page
Infinitesimals without Logic
We introduce the ring of Fermat reals, an extension of the real field
containing nilpotent infinitesimals. The construction takes inspiration from
Smooth Infinitesimal Analysis (SIA), but provides a powerful theory of actual
infinitesimals without any need of a background in mathematical logic. In
particular, on the contrary with respect to SIA, which admits models only in
intuitionistic logic, the theory of Fermat reals is consistent with classical
logic. We face the problem to decide if the product of powers of nilpotent
infinitesimals is zero or not, the identity principle for polynomials, the
definition and properties of the total order relation. The construction is
highly constructive, and every Fermat real admits a clear and order preserving
geometrical representation. Using nilpotent infinitesimals, every smooth
functions becomes a polynomial because in Taylor's formulas the rest is now
zero. Finally, we present several applications to informal classical
calculations used in Physics: now all these calculations become rigorous and,
at the same time, formally equal to the informal ones. In particular, an
interesting rigorous deduction of the wave equation is given, that clarifies
how to formalize the approximations tied with Hook's law using this language of
nilpotent infinitesimals.Comment: The first part of the preprint is taken directly form arXiv:0907.1872
The second part is new and contains a list of example
Compression and diffusion: a joint approach to detect complexity
The adoption of the Kolmogorov-Sinai (KS) entropy is becoming a popular
research tool among physicists, especially when applied to a dynamical system
fitting the conditions of validity of the Pesin theorem. The study of time
series that are a manifestation of system dynamics whose rules are either
unknown or too complex for a mathematical treatment, is still a challenge since
the KS entropy is not computable, in general, in that case. Here we present a
plan of action based on the joint action of two procedures, both related to the
KS entropy, but compatible with computer implementation through fast and
efficient programs. The former procedure, called Compression Algorithm
Sensitive To Regularity (CASToRe), establishes the amount of order by the
numerical evaluation of algorithmic compressibility. The latter, called Complex
Analysis of Sequences via Scaling AND Randomness Assessment (CASSANDRA),
establishes the complexity degree through the numerical evaluation of the
strength of an anomalous effect. This is the departure, of the diffusion
process generated by the observed fluctuations, from ordinary Brownian motion.
The CASSANDRA algorithm shares with CASToRe a connection with the Kolmogorov
complexity. This makes both algorithms especially suitable to study the
transition from dynamics to thermodynamics, and the case of non-stationary time
series as well. The benefit of the joint action of these two methods is proven
by the analysis of artificial sequences with the same main properties as the
real time series to which the joint use of these two methods will be applied in
future research work.Comment: 27 pages, 9 figure
Non-radial sign-changing solutions for the Schroedinger-Poisson problem in the semiclassical limit
We study the existence of nonradial sign-changing solutions to the
Schroedinger-Poisson system in dimension N>=3. We construct nonradial
sign-changing multi-peak solutions whose peaks are displaced in suitable
symmetric configurations and collapse to the same point. The proof is based on
the Lyapunov-Schmidt reduction
Convex domains of Finsler and Riemannian manifolds
A detailed study of the notions of convexity for a hypersurface in a Finsler
manifold is carried out. In particular, the infinitesimal and local notions of
convexity are shown to be equivalent. Our approach differs from Bishop's one in
his classical result (Bishop, Indiana Univ Math J 24:169-172, 1974) for the
Riemannian case. Ours not only can be extended to the Finsler setting but it
also reduces the typical requirements of differentiability for the metric and
it yields consequences on the multiplicity of connecting geodesics in the
convex domain defined by the hypersurface.Comment: 22 pages, AMSLaTex. Typos corrected, references update
- …