338 research outputs found

    A topological approach to non-Archimedean Mathematics

    Full text link
    Non-Archimedean mathematics (in particular, nonstandard analysis) allows to construct some useful models to study certain phenomena arising in PDE's; for example, it allows to construct generalized solutions of differential equations and variational problems that have no classical solution. In this paper we introduce certain notions of non-Archimedean mathematics (in particular, of nonstandard analysis) by means of an elementary topological approach; in particular, we construct non-Archimedean extensions of the reals as appropriate topological completions of R\mathbb{R}. Our approach is based on the notion of Λ\Lambda -limit for real functions, and it is called Λ\Lambda -theory. It can be seen as a topological generalization of the α\alpha -theory presented in \cite{BDN2003}, and as an alternative topological presentation of the ultrapower construction of nonstandard extensions (in the sense of \cite{keisler}). To motivate the use of Λ\Lambda -theory for applications we show how to use it to solve a minimization problem of calculus of variations (that does not have classical solutions) by means of a particular family of generalized functions, called ultrafunctions.Comment: 22 page

    On the Dynamics of solitons in the nonlinear Schroedinger equation

    Full text link
    We study the behavior of the soliton solutions of the equation i((\partial{\psi})/(\partialt))=-(1/(2m)){\Delta}{\psi}+(1/2)W_{{\epsilon}}'({\psi})+V(x){\psi} where W_{{\epsilon}}' is a suitable nonlinear term which is singular for {\epsilon}=0. We use the "strong" nonlinearity to obtain results on existence, shape, stability and dynamics of the soliton. The main result of this paper (Theorem 1) shows that for {\epsilon}\to0 the orbit of our soliton approaches the orbit of a classical particle in a potential V(x).Comment: 29 page

    Infinitesimals without Logic

    Full text link
    We introduce the ring of Fermat reals, an extension of the real field containing nilpotent infinitesimals. The construction takes inspiration from Smooth Infinitesimal Analysis (SIA), but provides a powerful theory of actual infinitesimals without any need of a background in mathematical logic. In particular, on the contrary with respect to SIA, which admits models only in intuitionistic logic, the theory of Fermat reals is consistent with classical logic. We face the problem to decide if the product of powers of nilpotent infinitesimals is zero or not, the identity principle for polynomials, the definition and properties of the total order relation. The construction is highly constructive, and every Fermat real admits a clear and order preserving geometrical representation. Using nilpotent infinitesimals, every smooth functions becomes a polynomial because in Taylor's formulas the rest is now zero. Finally, we present several applications to informal classical calculations used in Physics: now all these calculations become rigorous and, at the same time, formally equal to the informal ones. In particular, an interesting rigorous deduction of the wave equation is given, that clarifies how to formalize the approximations tied with Hook's law using this language of nilpotent infinitesimals.Comment: The first part of the preprint is taken directly form arXiv:0907.1872 The second part is new and contains a list of example

    Compression and diffusion: a joint approach to detect complexity

    Full text link
    The adoption of the Kolmogorov-Sinai (KS) entropy is becoming a popular research tool among physicists, especially when applied to a dynamical system fitting the conditions of validity of the Pesin theorem. The study of time series that are a manifestation of system dynamics whose rules are either unknown or too complex for a mathematical treatment, is still a challenge since the KS entropy is not computable, in general, in that case. Here we present a plan of action based on the joint action of two procedures, both related to the KS entropy, but compatible with computer implementation through fast and efficient programs. The former procedure, called Compression Algorithm Sensitive To Regularity (CASToRe), establishes the amount of order by the numerical evaluation of algorithmic compressibility. The latter, called Complex Analysis of Sequences via Scaling AND Randomness Assessment (CASSANDRA), establishes the complexity degree through the numerical evaluation of the strength of an anomalous effect. This is the departure, of the diffusion process generated by the observed fluctuations, from ordinary Brownian motion. The CASSANDRA algorithm shares with CASToRe a connection with the Kolmogorov complexity. This makes both algorithms especially suitable to study the transition from dynamics to thermodynamics, and the case of non-stationary time series as well. The benefit of the joint action of these two methods is proven by the analysis of artificial sequences with the same main properties as the real time series to which the joint use of these two methods will be applied in future research work.Comment: 27 pages, 9 figure

    Non-radial sign-changing solutions for the Schroedinger-Poisson problem in the semiclassical limit

    Get PDF
    We study the existence of nonradial sign-changing solutions to the Schroedinger-Poisson system in dimension N>=3. We construct nonradial sign-changing multi-peak solutions whose peaks are displaced in suitable symmetric configurations and collapse to the same point. The proof is based on the Lyapunov-Schmidt reduction

    Convex domains of Finsler and Riemannian manifolds

    Full text link
    A detailed study of the notions of convexity for a hypersurface in a Finsler manifold is carried out. In particular, the infinitesimal and local notions of convexity are shown to be equivalent. Our approach differs from Bishop's one in his classical result (Bishop, Indiana Univ Math J 24:169-172, 1974) for the Riemannian case. Ours not only can be extended to the Finsler setting but it also reduces the typical requirements of differentiability for the metric and it yields consequences on the multiplicity of connecting geodesics in the convex domain defined by the hypersurface.Comment: 22 pages, AMSLaTex. Typos corrected, references update
    • …
    corecore