16 research outputs found

    Heme-Thiolate perturbation in cystathionine β-Synthase by mercury compounds

    Get PDF
    Cystathionine β-synthase (CBS) is an enzyme involved in sulfur metabolism that catalyzes the pyridoxal phosphate-dependent condensation of homocysteine with serine or cysteine to form cystathionine and water or hydrogen sulfide (H2S), respectively. CBS possesses a b-type heme coordinated by histidine and cysteine. Fe(III)-CBS is inert toward exogenous ligands, while Fe(II)-CBS is reactive. Both Fe(III)- and Fe(II)-CBS are sensitive to mercury compounds. In this study, we describe the kinetics of the reactions with mercuric chloride (HgCl2) and p-chloromercuribenzoic acid. These reactions were multiphasic and resulted in five-coordinate CBS lacking thiolate ligation, with six-coordinate species as intermediates. Computational QM/MM studies supported the feasibility of formation of species in which the thiolate is proximal to both the iron ion and the mercury compound. The reactions of Fe(II)-CBS were faster than those of Fe(III)-CBS. The observed rate constants of the first phase increased hyperbolically with concentration of the mercury compounds, with limiting values of 0.3–0.4 s–1 for Fe(III)-CBS and 40 ± 4 s–1 for Fe(II)-CBS. The data were interpreted in terms of alternative models of conformational selection or induced fit. Exposure of Fe(III)-CBS to HgCl2 led to heme release and activity loss. Our study reveals the complexity of the interactions between mercury compounds and CBS

    Heme-Thiolate Perturbation in Cystathionine β-Synthase by Mercury Compounds

    Get PDF
    Cystathionine β-synthase (CBS) is an enzyme involved in sulfur metabolism that catalyzes the pyridoxal phosphate-dependent condensation of homocysteine with serine or cysteine to form cystathionine and water or hydrogen sulfide (H2S), respectively. CBS possesses a b-type heme coordinated by histidine and cysteine. Fe(III)-CBS is inert toward exogenous ligands, while Fe(II)-CBS is reactive. Both Fe(III)-and Fe(II)-CBS are sensitive to mercury compounds. In this study, we describe the kinetics of the reactions with mercuric chloride (HgCl2) and p-chloromercuribenzoic acid. These reactions were multiphasic and resulted in five-coordinate CBS lacking thiolate ligation, with six-coordinate species as intermediates. Computational QM/MM studies supported the feasibility of formation of species in which the thiolate is proximal to both the iron ion and the mercury compound. The reactions of Fe(II)-CBS were faster than those of Fe(III)-CBS. The observed rate constants of the first phase increased hyperbolically with concentration of the mercury compounds, with limiting values of 0.3-0.4 s-1 for Fe(III)-CBS and 40 ± 4 s-1 for Fe(II)-CBS. The data were interpreted in terms of alternative models of conformational selection or induced fit. Exposure of Fe(III)-CBS to HgCl2 led to heme release and activity loss. Our study reveals the complexity of the interactions between mercury compounds and CBS.Fil: Benchoam, Dayana. Universidad de la Republica; UruguayFil: Cuevasanta, Ernesto. Universidad de la Republica; UruguayFil: Julió Plana, Laia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Capece, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Banerjee, Ruma. University of Michigan; Estados UnidosFil: Alvarez, Beatriz. Universidad de la República; Urugua

    Possible molecular basis of the biochemical effects of cysteine-derived persulfides

    Get PDF
    Persulfides (RSSH/RSS−) are species closely related to thiols (RSH/RS−) and hydrogen sulfide (H2S/HS−), and can be formed in biological systems in both low and high molecular weight cysteine-containing compounds. They are key intermediates in catabolic and biosynthetic processes, and have been proposed to participate in the transduction of hydrogen sulfide effects. Persulfides are acidic, more acidic than thiols, and the persulfide anions are expected to be the predominant species at neutral pH. The persulfide anion has high nucleophilicity, due in part to the alpha effect, i.e., the increased reactivity of a nucleophile when the neighboring atom has high electron density. In addition, persulfides have electrophilic character, a property that is absent in both thiols and hydrogen sulfide. In this article, the biochemistry of persulfides is described, and the possible ways in which the formation of a persulfide could impact on the properties of the biomolecule involved are discussed

    Acidity and nucleophilic reactivity of glutathione persulfide

    Get PDF
    Persulfides (RSSH/RSS2) participate in sulfur trafficking and metabolic processes, and are proposed to mediate the signaling effects of hydrogen sulfide (H2S). Despite their growing relevance, their chemical properties are poorly understood. Herein, we studied experimentally and computationally the formation, acidity, and nucleophilicity of glutathione persulfide (GSSH/ GSS2), the derivative of the abundant cellular thiol glutathione (GSH). We characterized the kinetics and equilibrium of GSSH formation from glutathione disulfide and H2S. A pKa of 5.45 for GSSH was determined, which is 3.49 units below that of GSH. The reactions of GSSH with the physiologically relevant electrophiles peroxynitrite and hydrogen peroxide, and with the probe monobromobimane, were studied and compared with those of thiols. These reactions occurred through SN2 mechanisms. At neutral pH, GSSH reacted faster than GSH because of increased availability of the anion and, depending on the electrophile, increased reactivity. In addition, GSS2 presented higher nucleophilicity with respect to a thiolate with similar basicity. This can be interpreted in terms of the so-called a effect, i.e. the increased reactivity of a nucleophile when the atom adjacent to the nucleophilic atom has high electron density. The magnitude of the a effect correlated with the Brønsted nucleophilic factor, bnuc, for the reactions with thiolates and with the ability of the leaving group. Our study constitutes the first determination of the pKa of a biological persulfide and the first examination of the a effect in sulfur nucleophiles, and sheds light on the chemical basis of the biological properties of persulfides.Fil: Benchoam, Dayana. Universidad de la República; UruguayFil: Semelak, Jonathan Alexis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Cuevasanta, Ernesto. Universidad de la República; UruguayFil: Mastrogiovanni, Mauricio. Universidad de la Republica; UruguayFil: Grassano, Juan S.. Universidad de Buenos Aires; ArgentinaFil: Ferrer-Sueta, Gerardo. Universidad de la Republica; UruguayFil: Zeida Camacho, Ari Fernando. Universidad de la Republica; UruguayFil: Trujillo, Madia. Universidad de la Republica; UruguayFil: Möller, Matías N.. Universidad de la Republica; UruguayFil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Alvarez, Beatriz. Universidad de la Republica; Urugua

    Hydrogen Sulfide and Persulfides Oxidation by Biologically Relevant Oxidizing Species

    Get PDF
    Hydrogen sulfide (H2S/HS⁻) can be formed in mammalian tissues and exert physiological effects. It can react with metal centers and oxidized thiol products such as disulfides (RSSR) and sulfenic acids (RSOH). Reactions with oxidized thiol products form persulfides (RSSH/RSS⁻). Persulfides have been proposed to transduce the signaling effects of H2S through the modification of critical cysteines. They are more nucleophilic and acidic than thiols and, contrary to thiols, also possess electrophilic character. In this review, we summarize the biochemistry of hydrogen sulfide and persulfides, focusing on redox aspects. We describe biologically relevant one- and two-electron oxidants and their reactions with H2S and persulfides, as well as the fates of the oxidation products. The biological implications are discussed

    Heme-Thiolate Perturbation in Cystathionine β-Synthase by Mercury Compounds

    No full text
    Cystathionine β-synthase (CBS) is an enzyme involved in sulfur metabolism that catalyzes the pyridoxal phosphate-dependent condensation of homocysteine with serine or cysteine to form cystathionine and water or hydrogen sulfide (H2S), respectively. CBS possesses a b-type heme coordinated by histidine and cysteine. Fe(III)-CBS is inert toward exogenous ligands, while Fe(II)-CBS is reactive. Both Fe(III)- and Fe(II)-CBS are sensitive to mercury compounds. In this study, we describe the kinetics of the reactions with mercuric chloride (HgCl2) and p-chloromercuribenzoic acid. These reactions were multiphasic and resulted in five-coordinate CBS lacking thiolate ligation, with six-coordinate species as intermediates. Computational QM/MM studies supported the feasibility of formation of species in which the thiolate is proximal to both the iron ion and the mercury compound. The reactions of Fe(II)-CBS were faster than those of Fe(III)-CBS. The observed rate constants of the first phase increased hyperbolically with concentration of the mercury compounds, with limiting values of 0.3–0.4 s–1 for Fe(III)-CBS and 40 ± 4 s–1 for Fe(II)-CBS. The data were interpreted in terms of alternative models of conformational selection or induced fit. Exposure of Fe(III)-CBS to HgCl2 led to heme release and activity loss. Our study reveals the complexity of the interactions between mercury compounds and CBS

    Reasons for Utilizing Telemedicine during and after the COVID-19 Pandemic: An Internet-Based International Study

    No full text
    The COVID-19 pandemic challenges healthcare services. Concomitantly, this pandemic had a stimulating effect on technological expansions related to telehealth and telemedicine. We sought to elucidate the principal patients’ reasons for using telemedicine during the COVID-19 pandemic and the propensity to use it thereafter. Our primary objective was to identify the reasons of the survey participants’ disparate attitudes toward the use of telemedicine. We performed an online, multilingual 30-question survey for 14 days during March–April 2021, focusing on the perception and usage of telemedicine and their intent to use it after the pandemic. We analyzed the data to identify the attributes influencing the intent to use telemedicine and built decision trees to highlight the most important related variables. We examined 473 answers: 272 from Israel, 87 from Uruguay, and 114 worldwide. Most participants were women (64.6%), married (63.8%) with 1–2 children (52.9%), and living in urban areas (84.6%). Only a third of the participants intended to continue using telemedicine after the COVID-19 pandemic. Our main findings are that an expected substitution effect, technical proficiency, reduced queueing times, and peer experience are the four major factors in the overall adoption of telemedicine. Specifically, (1) for most participants, the major factor influencing their telemedicine usage is the implicit expectation that such a visit will be a full substitute for an in-person appointment; (2) another factor affecting telemedicine usage by patients is their overall technical proficiency and comfort level in the use of common web-based tools, such as social media, while seeking relevant medical information; (3) time saving as telemedicine can allow for asynchronous communications, thereby reducing physical travel and queuing times at the clinic; and finally (4) some participants have also indicated that telemedicine seems more attractive to them after watching family and friends (peer experience) use it successfully
    corecore