20 research outputs found

    In vitro and ex vivo methods predict the enhanced lung residence time of liposomal ciprofloxacin formulations for nebulisation

    Full text link
    Liposomal ciprofloxacin formulations have been developed with the aim of enhancing lung residence time, thereby reducing the burden of inhaled antimicrobial therapy which requires multiple daily administration due to rapid absorptive clearance of antibiotics from the lungs. However, there is a lack of a predictive methodology available to assess controlled release inhalation delivery systems and their effect on drug disposition. In this study, three ciprofloxacin formulations were evaluated: a liposomal formulation, a solution formulation and a 1:1 combination of the two (mixture formulation). Different methodologies were utilised to study the release profiles of ciprofloxacin from these formulations: (i) membrane diffusion, (ii) air interface Calu-3 cells and (iii) isolated perfused rat lungs. The data from these models were compared to the performance of the formulations in vivo. The solution formulation provided the highest rate of absorptive transport followed by the mixture formulation, with the liposomal formulation providing substantially slower drug release. The rank order of drug release/transport from the different formulations was consistent across the in vitro andex vivo methods, and this was predictive of the profiles in vivo. The use of complimentary in vitro and ex vivo methodologies provided a robust analysis of formulation behaviour, including mechanistic insights, and predicted in vivo pharmacokinetics.© 2013 Elsevier B.V. All rights reserved

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    Get PDF
    Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer

    Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: a meta-analysis.

    Get PDF
    Latin America and Caribbean (LAC) is a developing region characterized for its importance for global food security, producing 23 and 11% of the global beef and milk production, respectively. The region?s ruminant livestock sector however, is under scrutiny on environmental grounds due to its large contribution to enteric methane (CH4) emissions and influence on global climate change. Thus, the identification of effective CH4 mitigation strategies which do not compromise animal performance is urgently needed, especially in context of the Sustainable Development Goals (SDG) defined in the Paris Agreement of the United Nations. Therefore, the objectives of the current study were to: 1) collate a database of individual sheep, beef and dairy cattle records from enteric CH4 emission studies conducted in the LAC region, and 2) perform a meta-analysis to identify feasible enteric CH4 mitigation strategies, which do not compromise animal performance. After outlier?s removal, 2745 animal records (65% of the original data) from 103 studies were retained (from 2011 to 2021) in the LAC database. Potential mitigation strategies were classified into three main categories (i.e., animal breeding, dietary, and rumen manipulation) and up to three subcategories, totaling 34 evaluated strategies. A random effects model weighted by inverse variance was used (Comprehensive Meta-Analysis V3.3.070). Six strategies decreased at least one enteric CH4 metric and simultaneously increased milk yield (MY; dairy cattle) or average daily gain (ADG; beef cattle and sheep). The breed composition F1 Holstein × Gyr decreased CH4 emission per MY (CH4IMilk) while increasing MY by 99%. Adequate strategies of grazing management under continuous and rotational stocking decreased CH4 emission per ADG (CH4IGain) by 22 and 35%, while increasing ADG by 22 and 71%, respectively. Increased dietary protein concentration, and increased concentrate level through cottonseed meal inclusion, decreased CH4IMilk and CH4IGain by 10 and 20% and increased MY and ADG by 12 and 31%, respectively. Lastly, increased feeding level decreased CH4IGain by 37%, while increasing ADG by 171%. The identified effective mitigation strategies can be adopted by livestock producers according to their specific needs and aid LAC countries in achieving SDG as defined in the Paris Agreement

    The intellectual developments during the Almohad Dynasty (1130-1269)

    No full text
    Much has been written about the acclaimed Mahdi Ibn Tumart (1080–1130), the theological doctrine of AlMohads and their tireless efforts to extinct Malikism in the Maghreb. Such a development and Ibn Tumart’s claim of Mahdism caused AlMohads’ contributions to be totally or partially obscured while AlMohads shows significantly prosperous intellectual life. This research examines the background of the intellectual developments during AlMohad Dynasty, and their influence on advancing learning and scholarship. This inquiry not only helps highlight the effects of earlier dynasties on AlMohads intellectual life but also repositions the distinct theological character of AlMohads in the process of intellectual and legal development in the Maghreb

    Localized Epidermal Drug Delivery Induced by Supramolecular Solvent Structuring

    Get PDF
    The preferential localization of drug molecules in the epidermis of human skin is considered advantageous for a number of agents, but achieving such a delivery profile can be problematic. The aim of the present study was to assess if the manipulation of solvent supramolecular structuring in the skin could be used to promote drug residence in the epidermal tissue. Skin deposition studies showed that a 175-fold increase in the epidermal loading of a model drug diclofenac (138.65 ± 11.67 μg·cm<sup>–2</sup>), compared to a control (0.81 ± 0.13 μg·cm<sup>–2</sup>), could be achieved by colocalizing the drug with a high concentration of propylene glycol (PG) in the tissue. For such a system at 1 h postdose application, the PG flux into the skin was 9.3 mg·cm<sup>2</sup>·h<sup>–1</sup> and the PG–water ratio in the epidermis was 76:24 (v/v). At this solvent ratio infrared spectroscopy indicated that PG rich supramolecular structures, which displayed a relatively strong physical affinity for the drug, were formed. Encouraging the production of the PG-rich supermolecular structures in the epidermis by applying diclofenac to the skin using a high PG loading dose (240 μg·cm<sup>–2</sup>) produced an epidermal–transdermal drug distribution of 6.8:1. However, generating water-rich solvent supermolecular structures in the epidermis by applying diclofenac using a low PG loading dose (2.2 μg·cm<sup>–2</sup>) led to a loss of preferential epidermal localization of diclofenac in the tissue (0.7:1 epidermal–transdermal drug distribution). This change in diclofenac skin deposition profile in response to PG variations and the accompanying FTIR data supported the notion that supramolecular solvent structures could control drug accumulation in the human epidermis

    Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting

    No full text
    We propose a wavelet multiscale decomposition-based autoregressive approach for the prediction of 1-h ahead load based on historical electricity load data. This approach is based on a multiple resolution decomposition of the signal using the non-decimated or redundant Haar à trous wavelet transform whose advantage is taking into account the asymmetric nature of the time-varying data. There is an additional computational advantage in that there is no need to recompute the wavelet transform (wavelet coefficients) of the full signal if the electricity data (time series) is regularly updated. We assess results produced by this multiscale autoregressive (MAR) method, in both linear and non-linear variants, with single resolution autoregression (AR), multilayer perceptron (MLP), Elman recurrent neural network (ERN) and the general regression neural network (GRNN) models. Results are based on the New South Wales (Australia) electricity load data that is provided by the National Electricity Market Management Company (NEMMCO)

    Effect of environmental conditions on the crystallisation patterns and in vitro release of ibuprofen from drug-in-adhesive acrylic layers

    No full text
    For saturated formulations, where thermodynamic activity () is equal to 1, the flux of the permeant through a membrane should theoretically be constant irrespective of the delivery vehicle (Higuchi 1960). Although some studies have supported this hypothesis for saturated binary mixtures of propylene glycol (PG)/ water (e.g. Twist and Zatz 1986), variations from this ideal behaviour have been reported (e.g. Pellett et al 1994). Therefore, no definitive conclusions have been made regarding the influence of PG on the membrane transport rate of drugs from saturated vehicles. The aim of this study was to investigate systematically the impact of PG on the permeation of one drug, diclofenac diethylamine (DDEA), from a series of saturated binary mixtures, through model membranes.Peer reviewe

    Topical corticosteroid delivery into human skin using hydrofluoroalkane metered dose aerosol sprays

    No full text
    Drug loaded hydrofluoroalkane (HFA) sprays can generate effective pharmaceutical formulations, but a deeper understanding of the manner in which these dynamic systems drive the process of in situ semi-solid dosage form assembly is required. The aim of this study was to investigate the effect of the matrix assembly and composition on drug localisation in human skin. Comparing the characteristics of sprays constituting HFA 134a, ethanol (EtOH), poly(vinyl pyrrolidone) K90, isopropyl myristate (IPM), and poly(ethylene glycol) (PEG) demonstrated that the addition of non-volatile solvents acted to delay EtOH evaporation, control the degree of drug saturation (DS) and enhance the corticosteroid delivery from HFA spray formulations. In a dose matched skin penetration study the HFA sprays containing only EtOH as a co-solvent delivered 2.1 g BMV (DS 13.5) into the tissue, adding IPM to the EtOH HFA delivered 4.03 g BMV (DS 11.2), whist adding PEG to the EtOH HFA delivered 6.1 g BMV (DS 0.3). Compared to commercial cream (delivering 0.91 g BMV) the EtOH/PEG HFA spray deposited over 6 times (p < 0.05) more drug into the skin. Post spray deposition characterisation of the semi-solid suggested that the superior performance of the EtOH/PEG HFA spray was a consequence of retarding EtOH evaporation and presenting the drug in an EtOH rich PEG residual phase, which promoted BMV passage through the SC and into epidermis.Peer reviewe
    corecore