638 research outputs found
Imaging the deep structure of the San Andreas Fault south of Hollister with joint analysis of fault zone head and direct P arrivals
Author Posting. © Blackwell, 2007. This article is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 169 (2007): 1028–1042, doi:10.1111/j.1365-246X.2006.03319.x.We perform a joint inversion of arrival time data generated by direct P and fault zone (FZ) head waves in the San Andreas Fault south of Hollister, CA, to obtain a high-resolution local velocity structure. The incorporation of head waves allows us to obtain a sharp image of the overall velocity contrast across the fault as a function of depth, while the use of near-fault data allows us to resolve internal variations in the FZ structure. The data consist of over 9800 direct P and over 2700 head wave arrival times from 450 events at up to 54 stations of a dense temporary seismic array and the permanent northern California seismic network in the area. One set of inversions is performed upon the whole data set, and five inversion sets are performed on various data subsets in an effort to resolve details of the FZ structure. The results imply a strong contrast of P-wave velocities across the fault of ~50 per cent in the shallow section, and lower contrasts of 10–20 per cent below 3 km, with the southwest being the side with faster velocities. The presence of a shallow low velocity zone around the fault, which could corresponds to the damage structures imaged in trapped wave studies, is detected by inversions using subsets of the data made up of only stations close to the fault. The faster southwest side of the fault shows the development of a shallow low velocity FZ layer in inversions using instruments closer and closer to the fault (<5 and <2 km). Such a feature is not present in results of inversions using only stations at greater distances from the fault. On the slower northeast side of the fault, the presence of a low velocity shallow layer is only detected in the inversions using the stations within 2 km of the fault. We interpret this asymmetry across the fault as a possible indication of a preferred propagation direction of earthquake ruptures in the region. Using events from different portions of the fault, the head wave inversions also resolve small-scale features of the fault visible in the surface geology and relocated seismicity
Preface
The digital world demands a network infrastructure to supply connectivity to any participant anywhere. Sustainable networks require balanced value flows. Value is connectivity delivered at a material and service cost to compensate, involving diverse participants, ranging from consumers to providers, such as last mile access, regional transport, Internet carriers, or content providers. We focus on the case of wireless mesh networks that deliver connectivity through access points and a mesh network that routes traffic to Internet gateways, provisioned by several device owners and service operators [1, 2, 3]. The presented work is motivated by the need for balance and automation among services delivered, costs and incentives for participation in these decentralised networks. This balance is key for achieving extensible network infrastructures that can deliver widespread availability of Internet connectivity with minimal barriers of entry.This paper has been partially supported by the AmmbrTech Group, the Spanish government TIN2016-77836-C2-2-R and the Catalan government AGAUR SGR 990.Peer ReviewedPostprint (author's final draft
Anisotropies of tactile distance perception on the face
The distances between pairs of tactile stimuli oriented across the width of the hand dorsum are perceived as about 40% larger than equivalent distances oriented along the hand length. Clear anisotropies of varying magnitudes have been found on different sites on the limbs and less consistently on other parts of the body, with anisotropies on the center of the forehead, but not on the belly. Reported anisotropies on the center of the forehead, however, might reflect an artefact of categorical perception from the face midline, which might be comparable to the expansion of tactile distance perception observed for stimuli presented across joint boundaries. To test whether tactile anisotropy is indeed a general characteristic of the tactile representation of the face, we assessed the perceived distance between pairs of touches on the cheeks and three locations on the forehead: left, right, and center. Consistent with previous results, a clear anisotropy was apparent on the center of the forehead. Importantly, similar anisotropies were also evident on the left and right sides of the forehead and both cheeks. These results provide evidence that anisotropy of perceived tactile distance is not a specific feature of tactile organization at the limbs but it also exists for the face, and further suggest that the spatial distortions found for tactile distances that extend across multiple body parts are not present for stimuli that extend across the body midline
Mouse genetics identifies unique and overlapping functions of fibroblast growth factor receptors in keratinocytes
Fibroblast growth factors (FGFs) are key regulators of tissue development, homeostasis and repair, and abnormal FGF signalling is associated with various human diseases. In human and murine epidermis, FGF receptor 3 (FGFR3) activation causes benign skin tumours, but the consequences of FGFR3 deficiency in this tissue have not been determined. Here, we show that FGFR3 in keratinocytes is dispensable for mouse skin development, homeostasis and wound repair. However, the defect in the epidermal barrier and the resulting inflammatory skin disease that develops in mice lacking FGFR1 and FGFR2 in keratinocytes were further aggravated upon additional loss of FGFR3. This caused fibroblast activation and fibrosis in the FGFR1/FGFR2 double-knockout mice and even more in mice lacking all three FGFRs, revealing functional redundancy of FGFR3 with FGFR1 and FGFR2 for maintaining the epidermal barrier. Taken together, our study demonstrates that FGFR1, FGFR2 and FGFR3 act together to maintain epidermal integrity and cutaneous homeostasis, with FGFR2 being the dominant receptor
Control theory for principled heap sizing
We propose a new, principled approach to adaptive heap sizing based on control theory. We review current state-of-the-art heap sizing mechanisms, as deployed in Jikes RVM and HotSpot. We then formulate heap sizing as a control problem, apply and tune a standard controller algorithm, and evaluate its performance on a set of well-known benchmarks. We find our controller adapts the heap size more responsively than existing mechanisms. This responsiveness allows tighter virtual machine memory footprints while preserving target application throughput, which is ideal for both embedded and utility computing domains. In short, we argue that formal, systematic approaches to memory management should be replacing ad-hoc heuristics as the discipline matures. Control-theoretic heap sizing is one such systematic approach
Brain microRNAs among social and solitary bees
Evolutionary transitions to a social lifestyle in insects are associated with lineage-specific changes in gene expression, but the key nodes that drive these regulatory changes are unknown. We examined the relationship between social organization and lineage-specific microRNAs (miRNAs). Genome scans across 12 bee species showed that miRNA copy-number is mostly conserved and not associated with sociality. However, deep sequencing of small RNAs in six bee species revealed a substantial proportion (20–35%) of detected miRNAs had lineage-specific expression in the brain, 24–72% of which did not have homologues in other species. Lineage-specific miRNAs disproportionately target lineage-specific genes, and have lower expression levels than shared miRNAs. The predicted targets of lineage-specific miRNAs are not enriched for genes with caste-biased expression or genes under positive selection in social species. Together, these results suggest that novel miRNAs may coevolve with novel genes, and thus contribute to lineage-specific patterns of evolution in bees, but do not appear to have significant influence on social evolution. Our analyses also support the hypothesis that many new miRNAs are purged by selection due to deleterious effects on mRNA targets, and suggest genome structure is not as influential in regulating bee miRNA evolution as has been shown for mammalian miRNAs
The Drosophila Gene CheB42a Is a Novel Modifier of Deg/ENaC Channel Function
Degenerin/epithelial Na+ channels (DEG/ENaC) represent a diverse family of voltage-insensitive cation channels whose functions include Na+ transport across epithelia, mechanosensation, nociception, salt sensing, modification of neurotransmission, and detecting the neurotransmitter FMRFamide. We previously showed that the Drosophila melanogaster Deg/ENaC gene lounge lizard (llz) is co-transcribed in an operon-like locus with another gene of unknown function, CheB42a. Because operons often encode proteins in the same biochemical or physiological pathway, we hypothesized that CHEB42A and LLZ might function together. Consistent with this hypothesis, we found both genes expressed in cells previously implicated in sensory functions during male courtship. Furthermore, when coexpressed, LLZ coprecipitated with CHEB42A, suggesting that the two proteins form a complex. Although LLZ expressed either alone or with CHEB42A did not generate ion channel currents, CHEB42A increased current amplitude of another DEG/ENaC protein whose ligand (protons) is known, acid-sensing ion channel 1a (ASIC1a). We also found that CHEB42A was cleaved to generate a secreted protein, suggesting that CHEB42A may play an important role in the extracellular space. These data suggest that CHEB42A is a modulatory subunit for sensory-related Deg/ENaC signaling. These results are consistent with operon-like transcription of CheB42a and llz and explain the similar contributions of these genes to courtship behavior
Universal mean moment rate profiles of earthquake ruptures
Earthquake phenomenology exhibits a number of power law distributions
including the Gutenberg-Richter frequency-size statistics and the Omori law for
aftershock decay rates. In search for a basic model that renders correct
predictions on long spatio-temporal scales, we discuss results associated with
a heterogeneous fault with long range stress-transfer interactions. To better
understand earthquake dynamics we focus on faults with Gutenberg-Richter like
earthquake statistics and develop two universal scaling functions as a stronger
test of the theory against observations than mere scaling exponents that have
large error bars. Universal shape profiles contain crucial information on the
underlying dynamics in a variety of systems. As in magnetic systems, we find
that our analysis for earthquakes provides a good overall agreement between
theory and observations, but with a potential discrepancy in one particular
universal scaling function for moment-rates. The results reveal interesting
connections between the physics of vastly different systems with avalanche
noise.Comment: 13 pages, 5 figure
Gutenberg Richter and Characteristic Earthquake Behavior in Simple Mean-Field Models of Heterogeneous Faults
The statistics of earthquakes in a heterogeneous fault zone is studied
analytically and numerically in the mean field version of a model for a
segmented fault system in a three-dimensional elastic solid. The studies focus
on the interplay between the roles of disorder, dynamical effects, and driving
mechanisms. A two-parameter phase diagram is found, spanned by the amplitude of
dynamical weakening (or ``overshoot'') effects (epsilon) and the normal
distance (L) of the driving forces from the fault. In general, small epsilon
and small L are found to produce Gutenberg-Richter type power law statistics
with an exponential cutoff, while large epsilon and large L lead to a
distribution of small events combined with characteristic system-size events.
In a certain parameter regime the behavior is bistable, with transitions back
and forth from one phase to the other on time scales determined by the fault
size and other model parameters. The implications for realistic earthquake
statistics are discussed.Comment: 21 pages, RevTex, 6 figures (ps, eps
Statistics of Earthquakes in Simple Models of Heterogeneous Faults
Simple models for ruptures along a heterogeneous earthquake fault zone are
studied, focussing on the interplay between the roles of disorder and dynamical
effects. A class of models are found to operate naturally at a critical point
whose properties yield power law scaling of earthquake statistics. Various
dynamical effects can change the behavior to a distribution of small events
combined with characteristic system size events. The studies employ various
analytic methods as well as simulations.Comment: 4 pages, RevTex, 3 figures (eps-files), uses eps
- …