879 research outputs found

    Scaling in Tournaments

    Full text link
    We study a stochastic process that mimics single-game elimination tournaments. In our model, the outcome of each match is stochastic: the weaker player wins with upset probability q<=1/2, and the stronger player wins with probability 1-q. The loser is eliminated. Extremal statistics of the initial distribution of player strengths governs the tournament outcome. For a uniform initial distribution of strengths, the rank of the winner, x_*, decays algebraically with the number of players, N, as x_* ~ N^(-beta). Different decay exponents are found analytically for sequential dynamics, beta_seq=1-2q, and parallel dynamics, beta_par=1+[ln (1-q)]/[ln 2]. The distribution of player strengths becomes self-similar in the long time limit with an algebraic tail. Our theory successfully describes statistics of the US college basketball national championship tournament.Comment: 5 pages, 1 figure, empirical study adde

    On The Structure of Competitive Societies

    Full text link
    We model the dynamics of social structure by a simple interacting particle system. The social standing of an individual agent is represented by an integer-valued fitness that changes via two offsetting processes. When two agents interact one advances: the fitter with probability p and the less fit with probability 1-p. The fitness of an agent may also decline with rate r. From a scaling analysis of the underlying master equations for the fitness distribution of the population, we find four distinct social structures as a function of the governing parameters p and r. These include: (i) a static lower-class society where all agents have finite fitness; (ii) an upwardly-mobile middle-class society; (iii) a hierarchical society where a finite fraction of the population belongs to a middle class and a complementary fraction to the lower class; (iv) an egalitarian society where all agents are upwardly mobile and have nearly the same fitness. We determine the basic features of the fitness distributions in these four phases.Comment: 8 pages, 7 figure

    Dynamics of Three Agent Games

    Full text link
    We study the dynamics and resulting score distribution of three-agent games where after each competition a single agent wins and scores a point. A single competition is described by a triplet of numbers pp, tt and qq denoting the probabilities that the team with the highest, middle or lowest accumulated score wins. We study the full family of solutions in the regime, where the number of agents and competitions is large, which can be regarded as a hydrodynamic limit. Depending on the parameter values (p,q,t)(p,q,t), we find six qualitatively different asymptotic score distributions and we also provide a qualitative understanding of these results. We checked our analytical results against numerical simulations of the microscopic model and find these to be in excellent agreement. The three agent game can be regarded as a social model where a player can be favored or disfavored for advancement, based on his/her accumulated score. It is also possible to decide the outcome of a three agent game through a mini tournament of two-a gent competitions among the participating players and it turns out that the resulting possible score distributions are a subset of those obtained for the general three agent-games. We discuss how one can add a steady and democratic decline rate to the model and present a simple geometric construction that allows one to write down the corresponding score evolution equations for nn-agent games

    Kinetics of Heterogeneous Single-Species Annihilation

    Full text link
    We investigate the kinetics of diffusion-controlled heterogeneous single-species annihilation, where the diffusivity of each particle may be different. The concentration of the species with the smallest diffusion coefficient has the same time dependence as in homogeneous single-species annihilation, A+A-->0. However, the concentrations of more mobile species decay as power laws in time, but with non-universal exponents that depend on the ratios of the corresponding diffusivities to that of the least mobile species. We determine these exponents both in a mean-field approximation, which should be valid for spatial dimension d>2, and in a phenomenological Smoluchowski theory which is applicable in d<2. Our theoretical predictions compare well with both Monte Carlo simulations and with time series expansions.Comment: TeX, 18 page

    Randomness in Competitions

    Get PDF
    We study the effects of randomness on competitions based on an elementary random process in which there is a finite probability that a weaker team upsets a stronger team. We apply this model to sports leagues and sports tournaments, and compare the theoretical results with empirical data. Our model shows that single-elimination tournaments are efficient but unfair: the number of games is proportional to the number of teams N, but the probability that the weakest team wins decays only algebraically with N. In contrast, leagues, where every team plays every other team, are fair but inefficient: the top N\sqrt{N} of teams remain in contention for the championship, while the probability that the weakest team becomes champion is exponentially small. We also propose a gradual elimination schedule that consists of a preliminary round and a championship round. Initially, teams play a small number of preliminary games, and subsequently, a few teams qualify for the championship round. This algorithm is fair and efficient: the best team wins with a high probability and the number of games scales as N9/5N^{9/5}, whereas traditional leagues require N^3 games to fairly determine a champion.Comment: 10 pages, 8 figures, reviews arXiv:physics/0512144, arXiv:physics/0608007, arXiv:cond-mat/0607694, arXiv:physics/061221

    Percolation with Multiple Giant Clusters

    Full text link
    We study the evolution of percolation with freezing. Specifically, we consider cluster formation via two competing processes: irreversible aggregation and freezing. We find that when the freezing rate exceeds a certain threshold, the percolation transition is suppressed. Below this threshold, the system undergoes a series of percolation transitions with multiple giant clusters ("gels") formed. Giant clusters are not self-averaging as their total number and their sizes fluctuate from realization to realization. The size distribution F_k, of frozen clusters of size k, has a universal tail, F_k ~ k^{-3}. We propose freezing as a practical mechanism for controlling the gel size.Comment: 4 pages, 3 figure
    • …
    corecore