3 research outputs found

    Randomness in Competitions

    Get PDF
    We study the effects of randomness on competitions based on an elementary random process in which there is a finite probability that a weaker team upsets a stronger team. We apply this model to sports leagues and sports tournaments, and compare the theoretical results with empirical data. Our model shows that single-elimination tournaments are efficient but unfair: the number of games is proportional to the number of teams N, but the probability that the weakest team wins decays only algebraically with N. In contrast, leagues, where every team plays every other team, are fair but inefficient: the top N\sqrt{N} of teams remain in contention for the championship, while the probability that the weakest team becomes champion is exponentially small. We also propose a gradual elimination schedule that consists of a preliminary round and a championship round. Initially, teams play a small number of preliminary games, and subsequently, a few teams qualify for the championship round. This algorithm is fair and efficient: the best team wins with a high probability and the number of games scales as N9/5N^{9/5}, whereas traditional leagues require N^3 games to fairly determine a champion.Comment: 10 pages, 8 figures, reviews arXiv:physics/0512144, arXiv:physics/0608007, arXiv:cond-mat/0607694, arXiv:physics/061221

    Dynamics of Three Agent Games

    Full text link
    We study the dynamics and resulting score distribution of three-agent games where after each competition a single agent wins and scores a point. A single competition is described by a triplet of numbers pp, tt and qq denoting the probabilities that the team with the highest, middle or lowest accumulated score wins. We study the full family of solutions in the regime, where the number of agents and competitions is large, which can be regarded as a hydrodynamic limit. Depending on the parameter values (p,q,t)(p,q,t), we find six qualitatively different asymptotic score distributions and we also provide a qualitative understanding of these results. We checked our analytical results against numerical simulations of the microscopic model and find these to be in excellent agreement. The three agent game can be regarded as a social model where a player can be favored or disfavored for advancement, based on his/her accumulated score. It is also possible to decide the outcome of a three agent game through a mini tournament of two-a gent competitions among the participating players and it turns out that the resulting possible score distributions are a subset of those obtained for the general three agent-games. We discuss how one can add a steady and democratic decline rate to the model and present a simple geometric construction that allows one to write down the corresponding score evolution equations for nn-agent games

    How to Choose a Champion

    Full text link
    League competition is investigated using random processes and scaling techniques. In our model, a weak team can upset a strong team with a fixed probability. Teams play an equal number of head-to-head matches and the team with the largest number of wins is declared to be the champion. The total number of games needed for the best team to win the championship with high certainty, T, grows as the cube of the number of teams, N, i.e., T ~ N^3. This number can be substantially reduced using preliminary rounds where teams play a small number of games and subsequently, only the top teams advance to the next round. When there are k rounds, the total number of games needed for the best team to emerge as champion, T_k, scales as follows, T_k ~N^(\gamma_k) with gamma_k=1/[1-(2/3)^(k+1)]. For example, gamma_k=9/5,27/19,81/65 for k=1,2,3. These results suggest an algorithm for how to infer the best team using a schedule that is linear in N. We conclude that league format is an ineffective method of determining the best team, and that sequential elimination from the bottom up is fair and efficient.Comment: 6 pages, 3 figure
    corecore