7 research outputs found

    Binaural Reproduction Based on Bilateral Ambisonics

    Get PDF
    Binaural reproduction of high-quality spatial sound has gained considerable interest with the recent technology developments in virtual and augmented reality. The reproduction of binaural signals in the Spherical-Harmonics (SH) domain using Ambisonics is now a well-established methodology, with flexible binaural processing realized using SH representations of the sound-field and the Head-Related Transfer Function (HRTF). However, in most practical cases, the binaural reproduction is order-limited, which introduces truncation errors that have a detrimental effect on the perception of the reproduced signals, mainly due to the truncation of the HRTF. Recently, it has been shown that manipulating the HRTF phase component, by ear-alignment, significantly reduces its effective SH order while preserving its phase information, which may be beneficial for alleviating the above detrimental effect. Incorporating the ear-aligned HRTF into the binaural reproduction process has been suggested by using Bilateral Ambisonics, which is an Ambisonics representation of the sound-field formulated at the two ears. While this method imposes challenges on acquiring the sound-field, and specifically, on applying head-rotations, it leads to a significant reduction in errors caused by the limited-order reproduction, which yields a substantial improvement in the perceived binaural reproduction quality even with first order SH

    Spectral equalization in binaural signals represented by order-truncated spherical harmonics

    Get PDF
    The synthesis of binaural signals from spherical microphone array recordings has been recently proposed. The limited spatial resolution of the reproduced signal due to order-limited reproduction has been previously investigated perceptually, showing spatial perception ramifications, such as poor source localization and limited externalization. Furthermore, this spatial order limitation also has a detrimental effect on the frequency content of the signal and its perceived timbre, due to the rapid roll-off at high frequencies. In this paper, the underlying causes of this spectral roll-off are described mathematically and investigated numerically. A digital filter that equalizes the frequency spectrum of a low spatial order signal is introduced and evaluated. A comprehensive listening test was conducted to study the influence of the filter on the perception of the reproduced sound. Results indicate that the suggested filter is beneficial for restoring the timbral composition of order-truncated binaural signals, while conserving, and even improving, some spatial properties of the signal

    Loudness stability of binaural sound with spherical harmonic representation of sparse head-related transfer functions

    No full text
    Abstract In response to renewed interest in virtual and augmented reality, the need for high-quality spatial audio systems has emerged. The reproduction of immersive and realistic virtual sound requires high resolution individualized head-related transfer function (HRTF) sets. In order to acquire an individualized HRTF, a large number of spatial measurements are needed. However, such a measurement process requires expensive and specialized equipment, which motivates the use of sparsely measured HRTFs. Previous studies have demonstrated that spherical harmonics (SH) can be used to reconstruct the HRTFs from a relatively small number of spatial samples, but reducing the number of samples may produce spatial aliasing error. Furthermore, by measuring the HRTF on a sparse grid the SH representation will be order-limited, leading to constrained spatial resolution. In this paper, the effect of sparse measurement grids on the reproduced binaural signal is studied by analyzing both aliasing and truncation errors. The expected effect of these errors on the perceived loudness stability of the virtual sound source is studied theoretically, as well as perceptually by an experimental investigation. Results indicate a substantial effect of truncation error on the loudness stability, while the added aliasing seems to significantly reduce this effect

    Perceptual Evaluation of Approaches for Binaural Reproduction of Non-Spherical Microphone Array Signals

    No full text
    Microphone arrays consisting of sensors mounted on the surface of a rigid, spherical scatterer are popular tools for the capture and binaural reproduction of spatial sound scenes. However, microphone arrays with a perfectly spherical body and uniformly distributed microphones are often impractical for the consumer sector, in which microphone arrays are generally mounted on mobile and wearable devices of arbitrary geometries. Therefore, the binaural reproduction of sound fields captured with arbitrarily shaped microphone arrays has become an important field of research. In this work, we present a comparison of methods for the binaural reproduction of sound fields captured with non-spherical microphone arrays. First, we evaluated equatorial microphone arrays (EMAs), where the microphones are distributed on an equatorial contour of a rigid, spherical 1. Second, we evaluated a microphone array with six microphones mounted on a pair of glasses. Using these two arrays, we conducted two listening experiments comparing four rendering methods based on acoustic scenes captured in different rooms2. The evaluation includes a microphone-based stereo approach (sAB stereo), a beamforming-based stereo approach (sXY stereo), beamforming-based binaural reproduction (BFBR), and BFBR with binaural signal matching (BSM). Additionally, the perceptual evaluation included binaural Ambisonics renderings, which were based on measurements with spherical microphone arrays. In the EMA experiment we included a fourth-order Ambisonics rendering, while in the glasses array experiment we included a second-order Ambisonics rendering. In both listening experiments in which participants compared all approaches with a dummy head recording we applied non-head-tracked binaural synthesis, with sound sources only in the horizontal plane. The perceived differences were rated separately for the attributes timbre and spaciousness. Results suggest that most approaches perform similarly to the Ambisonics rendering. Overall, BSM, and microphone-based stereo were rated the best for EMAs, and BFBR and microphone-based stereo for the glasses array

    Six-Degrees-of-Freedom Binaural Reproduction of Head-Worn Microphone Array Capture

    No full text
    This article formulates and evaluates four different methods for six-degrees-of-freedom binaural reproduction of head-worn microphone array recordings, which may find application within future augmented reality contexts. Three of the explored methods are signalindependent, utilizing least-squares, magnitude least-squares, or plane wave decomposition--based solutions. Rotations and translations are realized by applying directional transformations to the employed spherical rendering or optimization grid. The fourth considered approach is a parametric signal-dependent alternative, which decomposes the array signals into directional and ambient components using beamformers. The directional components are then spatialized by applying binaural filters corresponding to the transformed directions, whereas the ambient sounds are reproduced using the magnitude least-squares solution. Formal perceptual studies were conducted, whereby test participants rated the perceived relative quality of the four binaural rendering methods being evaluated. Of the three signal-independent approaches, the magnitude least-squares solution was rated the highest. The parametric approach was then rated higher than the magnitude least-square solution when the listeners were permitted to move away from the recording point.Peer reviewe

    Spatial audio signal processing for binaural reproduction of recorded acoustic scenes - review and challenges

    No full text
    Spatial audio has been studied for several decades, but has seen much renewed interest recently due to advances in both software and hardware for capture and playback, and the emergence of applications such as virtual reality and augmented reality. This renewed interest has led to the investment of increasing efforts in developing signal processing algorithms for spatial audio, both for capture and for playback. In particular, due to the popularity of headphones and earphones, many spatial audio signal processing methods have dealt with binaural reproduction based on headphone listening. Among these new developments, processing spatial audio signals recorded in real environments using microphone arrays plays an important role. Following this emerging activity, this paper aims to provide a scientific review of recent developments and an outlook for future challenges. This review also proposes a generalized framework for describing spatial audio signal processing for the binaural reproduction of recorded sound. This framework helps to understand the collective progress of the research community, and to identify gaps for future research. It is composed of five main blocks, namely: the acoustic scene, recording, processing, reproduction, and perception and evaluation. First, each block is briefly presented, and then, a comprehensive review of the processing block is provided. This includes topics from simple binaural recording to Ambisonics and perceptually motivated approaches, which focus on careful array configuration and design. Beamforming and parametric-based processing afford more flexible designs and shift the focus to processing and modeling of the sound field. Then, emerging machine- and deep-learning approaches, which take a further step towards flexibility in design, are described. Finally, specific methods for signal transformations such as rotation, translation and enhancement, enabling additional flexibility in reproduction and improvement in the quality of the binaural signal, are presented. The review concludes by highlighting directions for future research
    corecore