5 research outputs found

    CMRR-Bandwidth Extension Technique for CMOS Differential Amplifiers

    Get PDF
    An exemplary design demonstrates how to extend the common-mode rejection ratio (CMRR) bandwidth of a CMOS differential amplifier. The design presented uses MOSFETs with a channel length of 180nm. A novel circuit technique is employed that partially compensates for the output capacitance of the tail current sink, thereby more than quadrupling the CMRR bandwidth in the example considered

    Technique for increasing the output impedance of CMOS regulated cascode circuits

    Get PDF
    A technique is proposed for the design of a modified CMOS regulated cascode having an output impedance significantly greater than that of a conventional regulated cascode. Simulation results for an illustrative design, operating at 10µA from a 1V supply, show an increase in output resistance from 636MΩ and output bandwidth of 55kHz for a conventional circuit to 6.68GΩ and 389kHz, respectively, for the proposed design

    Improved designs for current feedback op-amps

    Get PDF
    The performance of the current feedback op-amps (CFOAs) is very much determined by the input stage of CFOAs, including common-mode rejection ratio (CMRR). Two new CFOAs topologies are presented in this article: one topology uses a cascoding technique, and the second one uses a bootstrapping technique, both of which provide a much better CMRR and lower DC offset voltage than the conventional CFOAs. Moreover, the new CFOAs design exhibits an extended high frequency bandwidth, with a gain accuracy improvement. Applications requiring constant bandwidth with variable (closed loop) gain will benefit from the proposed topologies

    Wide-Bandwidth CFOA with High CMRR Performance

    Get PDF
    ​In this paper the authors analyze the conventional current-feedback operational amplifier (CFOA) in terms of common-mode-rejection ratio (CMRR) performance, and having identified the mechanism primarily responsible for the CMRR, they propose two new architecture CFOAs. These new CFOAs are further developed, and modified to provide improved bandwidth, AC gain accuracy and high CMRR performance. The key features of the two proposed new CFOAs are the designs of the internal voltage followers which have two separate biasing currents with a similar dynamic architecture to that of the conventional CFOA. The magnitude of one bias current determines the value of the maximum CMRR, and the second can be used to maximize bandwidth

    Analysis and design of a high precision- high output impedance tissue current driver for medical applications

    Get PDF
    This paper describes the design and operation of a high output impedance tissue current driver circuit, for use in medical electronics, such as Electrical Impedance Tomography (EIT). This novel architecture was designed for implementation in bipolar technology, to meet the specifications for EIT, namely operating frequency range 10 kHz–1 MHz with a target output resistance of 16 MW. Simulation results are presented, showing that the current source more than met the minimum specification for EIT
    corecore