12 research outputs found

    Longitudinal changes in left ventricular blood flow kinetic energy after myocardial infarction: predictive relevance for cardiac remodeling

    Get PDF
    Background Four-dimensional (4D) flow cardiac magnetic resonance (cardiac MR) imaging provides quantification of intracavity left ventricular (LV) flow kinetic energy (KE) parameters in three dimensions. ST-elevation myocardial infarction (STEMI) patients have been shown to have altered intracardiac blood flow compared to controls; however, how 4D flow parameters change over time has not been explored previously. Purpose Measure longitudinal changes in intraventricular flow post-STEMI and ascertain its predictive relevance of long-term cardiac remodeling. Study Type Prospective. Population Thirty-five STEMI patients (M:F = 26:9, aged 56 +/- 9 years). Field Strength/Sequence A 3 T/3D EPI-based, fast field echo (FFE) free-breathing 4D-flow sequence with retrospective cardiac gating. Assessment Serial imaging at 3-7 days (V1), 3-months (V2), and 12-months (V3) post-STEMI, including the following protocol: functional imaging for measuring volumes and 4D-flow for calculating parameters including systolic and peakE-wave LVKE, normalized to end-diastolic volume (iEDV) and stroke volume (iSV). Data were analyzed by H.B. (3 years experience). Patients were categorized into two groups: preserved ejection fraction (pEF, if EF > 50%) and reduced EF (rEF, if EF < 50%). Statistical Tests Independent sample t-tests were used to detect the statistical significance between any two cohorts. P < 0.05 was considered statistically significant. Results Across the cohort, systolic KEi(sv) was highest at V1 (28.0 +/- 4.4 mu J/mL). Patients with rEF retained significantly higher systolic KEi(sv) than patients with pEF at V2 (18.2 +/- 3.4 mu J/mL vs. 6.9 +/- 0.6 mu J/mL, P < 0.001) and V3 (21.6 +/- 5.1 mu J/mL vs. 7.4 +/- 0.9 mu J/mL, P < 0.001). Patients with pEF had significantly higher peakE-wave KEi(EDV) than rEF patients throughout the study (V1: 25.4 +/- 11.6 mu J/mL vs. 18.1 +/- 9.9 mu J/mL, P < 0.03, V2: 24.0 +/- 10.2 mu J/mL vs. 17.2 +/- 12.2 mu J/mL, P < 0.05, V3: 27.7 +/- 14.8 mu J/mL vs. 15.8 +/- 7.6 mu J/mL, P < 0.04). Data Conclusion Systolic KE increased acutely following MI; in patients with pEF, this decreased over 12 months, while patients with rEF, this remained raised. Compared to patients with pEF, persistently lower peakE-wave KE in rEF patients is suggestive of early and fixed impairment in diastolic function. Evidence Level 1 Technical Efficacy Stage 3Cardiovascular Aspects of Radiolog

    Fatigue evaluation in maintenance and assembly operations by digital human simulation

    Get PDF
    Virtual human techniques have been used a lot in industrial design in order to consider human factors and ergonomics as early as possible. The physical status (the physical capacity of virtual human) has been mostly treated as invariable in the current available human simulation tools, while indeed the physical capacity varies along time in an operation and the change of the physical capacity depends on the history of the work as well. Virtual Human Status is proposed in this paper in order to assess the difficulty of manual handling operations, especially from the physical perspective. The decrease of the physical capacity before and after an operation is used as an index to indicate the work difficulty. The reduction of physical strength is simulated in a theoretical approach on the basis of a fatigue model in which fatigue resistances of different muscle groups were regressed from 24 existing maximum endurance time (MET) models. A framework based on digital human modeling technique is established to realize the comparison of physical status. An assembly case in airplane assembly is simulated and analyzed under the framework. The endurance time and the decrease of the joint moment strengths are simulated. The experimental result in simulated operations under laboratory conditions confirms the feasibility of the theoretical approach

    Insight Into Myocardial Microstructure of Athletes and Hypertrophic Cardiomyopathy Patients Using Diffusion Tensor Imaging

    Get PDF
    Background Hypertrophic cardiomyopathy (HCM) remains the commonest cause of sudden cardiac death among young athletes. Differentiating between physiologically adaptive left ventricular (LV) hypertrophy observed in athletes' hearts and pathological HCM remains challenging. By quantifying the diffusion of water molecules, diffusion tensor imaging (DTI) MRI allows voxelwise characterization of myocardial microstructure. Purpose To explore microstructural differences between healthy volunteers, athletes, and HCM patients using DTI. Study Type Prospective cohort. Population Twenty healthy volunteers, 20 athletes, and 20 HCM patients. Field Strength/Sequence 3T/DTI spin echo. Assessment In‐house MatLab software was used to derive mean diffusivity (MD) and fractional anisotropy (FA) as markers of amplitude and anisotropy of the diffusion of water molecules, and secondary eigenvector angles (E2A)—reflecting the orientations of laminar sheetlets. Statistical Tests Independent samples t‐tests were used to detect statistical significance between any two cohorts. Analysis of variance was utilized for detecting the statistical difference between the three cohorts. Statistical tests were two‐tailed. A result was considered statistically significant at P ≤ 0.05. Results DTI markers were significantly different between HCM, athletes, and volunteers. HCM patients had significantly higher global MD and E2A, and significantly lower FA than athletes and volunteers. (MDHCM = 1.52 ± 0.06 × 10−3 mm2/s, MDAthletes = 1.49 ± 0.03 × 10−3 mm2/s, MDvolunteers = 1.47 ± 0.02 × 10−3 mm2/s, P < 0.05; E2AHCM = 58.8 ± 4°, E2Aathletes = 47 ± 5°, E2Avolunteers = 38.5 ± 7°, P < 0.05; FAHCM = 0.30 ± 0.02, FAAthletes = 0.35 ± 0.02, FAvolunteers = 0.36 ± 0.03, P < 0.05). HCM patients had significantly higher E2A in their thickest segments compared to the remote (E2Athickest = 66.8 ± 7, E2Aremote = 51.2 ± 9, P < 0.05). Data Conclusion DTI depicts an increase in amplitude and isotropy of diffusion in the myocardium of HCM compared to athletes and volunteers as reflected by increased MD and decreased FA values. While significantly higher E2A values in HCM and athletes reflect steeper configurations of the myocardial sheetlets than in volunteers, HCM patients demonstrated an eccentric rise in E2A in their thickest segments, while athletes demonstrated a concentric rise. Further studies are required to determine the diagnostic capabilities of DTI. Evidence Level 1 Technical Efficacy Stage

    Acute intra-cavity 4D flow predicts long-term adverse remodelling following ST-elevation myocardial infarction

    Get PDF
    BACKGROUND: Despite advancements in percutaneous coronary intervention, a significant proportion of ST-elevation myocardial infarction (STEMI) survivors develop long-term adverse left ventricular (LV) remodelling, which is associated with poor prognosis. Adverse remodelling is difficult to predict, however four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) can measure various aspects of LV intra-cavity flow beyond LV ejection fraction and is well equipped for exploring the underlying mechanical processes driving remodelling. The aim for this study was to compare acute 4D flow CMR parameters between patients who develop adverse remodelling with patients who do not. METHODS: Fifty prospective ‘first-event’ STEMI patients underwent CMR 5 days post-reperfusion, which included cine-imaging, and 4D flow for assessing in-plane kinetic energy (KE), residual volume, peak-E and peak-A wave KE (indexed for LV end-diastolic volume [LVEDV]). All subjects underwent follow-up cine CMR imaging at 12 months to identify adverse remodelling (defined as 20% increase in LVEDV from baseline). Quantitative variables were compared using unpaired student’s t-test. Tests were deemed statistically significant when p < 0.05. RESULTS: Patients who developed adverse LV remodelling by 12 months had significantly higher in-plane KE (54 ± 12 vs 42 ± 10%, p = 0.02), decreased proportion of direct flow (27 ± 9% vs 11 ± 4%, p < 0.01), increased proportion of delayed ejection flow (22 ± 9% vs 12 ± 2, p < 0.01) and increased proportion of residual volume after 2 consecutive cardiac cycles (64 ± 14 vs 34 ± 14%, p < 0.01), in their acute scan. CONCLUSION: Following STEMI, increased in-plane KE, reduced direct flow and increased residual volume in the acute scan were all associated with adverse LV remodelling at 12 months. Our results highlight the clinical utility of acute 4D flow in prognostic stratification in patients following myocardial infarction

    The relationship between myocardial microstructure and strain in chronic infarcts, assessed using diffusion tensor imaging and feature tracking

    No full text
    Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): British Heart Foundation Background Cardiac diffusion tensor imaging (cDTI) is a novel technique for the non-invasive assessment of myocardial microstructure.  It allows in-vivo characterisation of microstructural changes post myocardial infarction (MI). Previously published evidence shows significant loss of sheetlet orientation as derived by cDTI secondary eigenvector (E2A), and loss of subendocardial cardiomyocytes derived by reductions in the proportions of myocytes with right-handed orientation (RHM) on helix angle (HA) maps. The assessment of myocardial strain by feature tracking (FT) allows the measurement of radial strain (RS), thought to be driven by the dynamic reorientation of laminar sheetlets, and longitudinal strain (LS), which is thought to relate to subendocardial function. We sought to explore the relationship between the strain and cDTI parameters in patients at 3 months following ST-elevation MI (STEMI). Methods Twenty five STEMI patients (M:F = 18:7, mean age 58 ± 9) underwent 3T CMR scan (mean interval 106 ± 17 days) with the following protocol: second order motion compensated (M2), free-breathing spin echo DTI (3 slices, 18 diffusion directions at b-values 100s/mm2, 200s/mm2 and 500s/mm2, acquired resolution was 2.20*2.27*8mm3; cine gradient echo and Late Gadolinium Enhancement (LGE) imaging. HA maps were described by dividing values into left-handed HA (LHM, -90&amp;lt; HA &amp;lt; -30), circumferential HA (CM, -30° &amp;lt; HA &amp;lt; 30°), and right-handed HA (RHM, 30° &amp;lt; HA &amp;lt; 90°) and reported as relative proportions. Segmental analysis were undertaken to derive: HA proportions, E2A, longitudinal strain and LGE%. Segments positive for LGE were classed as infarct segments. Results cDTI acquisition was successful in all patients (acquisition time 13 ± 5mins). Mean ejection fraction was 47 ± 8% with mean LGE in the infarcted segment of 57 ± 27%. Mean radial strain was 21 (95% confidence interval, 15-26). The mean E2A was 44 (95% confidence interval 41-47). There was a significant correlation between segmental radial strain and segmental E2A in infarcted segments (p &amp;lt; 0.001, figure 1). In addition, segmental longitudinal strain correlated with the proportion of RHM on HA maps (p &amp;lt; 0.02, figure 2). Conclusion Through the combined use of cDTI and FT in patients with chronic infarcts, our results show that the loss of sheetlet orientation assessed using E2A, correlates with worsening radial strain. Segments with less subendocardial cardiomyocytes, evidenced by a lower proportion of myocytes with right-handed orientation on HA maps, correlated with worse longitudinal strain. While this could potentially elucidate the complex association between myocardial microstructure and regional function, further studies are needed to define the incremental clinical value of cDTI. </jats:sec

    Same data, different conclusions : radical dispersion in empirical results when independent analysts operationalize and test the same hypothesis

    No full text
    In this crowdsourced initiative, independent analysts used the same dataset to test two hypotheses regarding the effects of scientists’ gender and professional status on verbosity during group meetings. Not only the analytic approach but also the operationalizations of key variables were left unconstrained and up to individual analysts. For instance, analysts could choose to operationalize status as job title, institutional ranking, citation counts, or some combination. To maximize transparency regarding the process by which analytic choices are made, the analysts used a platform we developed called DataExplained to justify both preferred and rejected analytic paths in real time. Analyses lacking sufficient detail, reproducible code, or with statistical errors were excluded, resulting in 29 analyses in the final sample. Researchers reported radically different analyses and dispersed empirical outcomes, in a number of cases obtaining significant effects in opposite directions for the same research question. A Boba multiverse analysis demonstrates that decisions about how to operationalize variables explain variability in outcomes above and beyond statistical choices (e.g., covariates). Subjective researcher decisions play a critical role in driving the reported empirical results, underscoring the need for open data, systematic robustness checks, and transparency regarding both analytic paths taken and not taken. Implications for organizations and leaders, whose decision making relies in part on scientific findings, consulting reports, and internal analyses by data scientists, are discussed
    corecore