34 research outputs found

    Molecular and Sensory Basis of a Food Related Two-State Behavior in C. elegans

    Get PDF
    Most animals display multiple behavioral states and control the time allocation to each of their activity phases depending on their environment. Here we develop a new quantitative method to analyze Caenorhabditis elegans behavioral states. We show that the dwelling and roaming two-state behavior of C. elegans is tightly controlled by the concentration of food in the environment of the animal. Sensory perception through the amphid neurons is necessary to extend roaming phases while internal metabolic perception of food nutritional value is needed to induce dwelling. Our analysis also shows that the proportion of time spent in each state is modulated by past nutritional experiences of the animal. This two-state behavior is regulated through serotonin as well as insulin and TGF-beta signaling pathways. We propose a model where food nutritional value is assessed through internal metabolic signaling. Biogenic amines signaling could allow the worm to adapt to fast changes in the environment when peptide transcriptional pathways may mediate slower adaptive changes

    Immunohistochemical examination of immune cells in adipose tissue of rainbow trout (Oncorhynchus mykiss) following intraperitoneal vaccination

    Get PDF
    KAV was supported by ELANCO and SEPPIC to undertake a PhD program at the University of Aberdeen. KAV would like to thank Dr. Abdo Alnabulsi and Dr. Jason Holland for their assistance with immunohistochemistry.Peer reviewedPostprin

    Rainbow trout (Oncorhynchus mykiss) adipose tissue undergoes major changes in immune gene expression following bacterial infection or stimulation with pro-inflammatory molecules

    Get PDF
    KAV was supported by ELANCO and SEPPIC to undertake a PhD program at the University of Aberdeen. EW was supported by a PhD studentship from the Ministry of Science and Technology of Thailand and Mahasarakham University. TH received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference HR09011).Peer reviewedPostprin

    Eléments moléculaires, cellulaires et environnementaux du contrÎle de la locomotion chez Caenorhabditis elegans

    Get PDF
    Caenorhabditis elegans is a model system well suited to analyze how neuronal circuit integrate sensory information to generate behavior. I focused my thesis on the study of the cellular, molecular and environmental basis of the locomotory behavior of the worm. I first developed a new quantitative method to analyze the locomotion of C. elegans on food. As in previous studies I could show that C. elegans exhibits two activity phases on food. I have established that internal sensing of food presence is necessary to induce the inactive phase and that chemosensory perception promotes the active phase. This behavior also depends on the concentration of food in the environment of the worm and on its previous food experience. C. elegans actually switch from an all-roaming phenotype to a mostly dwelling behavior in a decade of bacterial concentration. Moreover, I have shown that serotonin signaling and the insulin and TGF-beta pathways control this behavior. I have also developed a new automated system for simultaneous recording of behavior and neuronal activity in freely moving C. elegans in standard laboratory conditions. Using this system, I could show that spontaneous reversals of the worm reflect precisely the activity of the AVA command interneurons. I could also evidence spontaneous activity transients in the PLM sensory neurons during free behavior of C. elegans in standard conditions. These activity transients are coupled to short spontaneous forward accelerations of the worm.Caenorhabditis elegans est un organisme modÚle bien adapté à l'analyse du fonctionnement de son réseau de neurones, de l'intégration des informations sensorielles qu'il reçoit à l'élaboration d'une réponse comportementale. Au cours de cette thÚse, je me suis intéressée à l'étude de quelques paramÚtres cellulaires, moléculaires et environnementaux de la stratégie locomotrice de ce nématode. J'ai développé une méthode originale d'analyse quantitative de l'alternance des phases d'activité de C. elegans en présence de bactéries. J'ai montré que la phase inactive est induite par la perception interne de bactéries nutritives alors que la phase active est favorisée par la perception chemosensorielle. Ce comportement bimodal est aussi contrÎlé par la concentration en nourriture de l'environnement et est modulé par son état de satiété. On observe en effet une transition d'un état constamment actif à un comportement majoritairement inactif en une décade de concentrations en bactéries. J'ai également montré que ce comportement est régulé par les voies de signalisation de la sérotonine, de l'insuline et des TGF-beta. J'ai par ailleurs développé un nouveau systÚme d'imagerie permettant l'enregistrement simultané de l'activité calcique de neurones uniques et du comportement de vers se déplaçant librement en conditions standard de laboratoire. J'ai pu montrer que les mouvements de recul spontanés de C. elegans reflÚtent précisément l'activité calcique des neurones de commande AVA. Par ailleurs, j'ai pu détecter des pics d'activité calcique spontanés des neurones mécanosensoriels PLM lors du déplacement libre du ver corrélés à de courtes phases d'accélération de l'animal

    Eléments moléculaires, cellulaires et environnementaux du contrÎle de la locomotion chez Caenorhabditis elegans

    No full text
    Au cours de cette thÚse, je me suis intéressée à l'étude de quelques paramÚtres cellulaires, moléculaires et environnementaux de la stratégie locomotrice du nématode Caenorhabditis elegans. J'ai développé une méthode originale d'analyse quantitative de l'alternance des phases d'activité de C. elegans en présence de bactéries. J'ai montré que la phase inactive est induite par la perception interne de nourriture alors que la phase active est favorisée par la perception chemosensorielle. Ce comportement est contrÎlé par la concentration de nourriture et par l état de satiété de l animal, par les voies de signalisation de la sérotonine, de l'insuline et des TGF-beta. J'ai également développé un nouveau systÚme d'imagerie permettant l'enregistrement simultané de l'activité calcique de neurones uniques et du comportement de vers se déplaçant librement en conditions standard de laboratoire. J'ai pu montrer que les mouvements de recul spontanés de C. elegans reflÚtent précisément l'activité des neurones de commande AVA. J'ai pu aussi détecter des pics d'activité spontanés des neurones mécanosensoriels PLM corrélés à de courtes phases d'accélération du ver.PARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    <i>C. elegans</i> adapts its roaming behavior to food concentration, both by changing the dwelling/roaming percentage and the speed during the roaming phase.

    No full text
    <p>(A–D) Speed histograms of WT <i>C. elegans</i> on different concentration of bacteria (A: 5 10<sup>4</sup> B: 1.5 10<sup>5</sup> C: 3 10<sup>5</sup> D: 5 10<sup>5</sup> bacteria per cm<sup>2</sup>, at least 15 worms have been recorded per condition, results are presented as mean ± s.e.m.) (E) Speed in the roaming phase decreases with food concentration (F) The percentage of time spent in the roaming phase is a function of food concentration (logarithm scale). Worms switch from an all-roaming to mostly dwelling in one decade of food concentration.</p

    Proposed schematic representation of the control of the dwelling and roaming behavior by sensory perception and internal signaling.

    No full text
    <p>Proposed schematic representation of the control of the dwelling and roaming behavior by sensory perception and internal signaling.</p

    Two-state behavior of wild type <i>C. elegans</i> on food.

    No full text
    <p>(A) Trajectories of multiple WT <i>C. elegans</i> on OP50 (60 mm plate) (B) Curvature histogram for all the wild type worms (1bin = 1°) (C) Speed histogram for all the wild type worms (1bin = 0.05 mm/s) (D) Data points density map in the (Speed, curvature) plane. Two clusters can be observed (Data from 38 worms) (E) Clustering method. Data points over line A are attributed to the roaming phase, data points under line A to the dwelling phase. Line A has been determined on total WT data and is used for analysis of all the experiments in all the conditions.</p
    corecore