1,600 research outputs found

    Introduction to the Armed Forces & Society forum on military reserves in the “New Wars”

    Get PDF
    This is the final version. Available on open access from SAGE Publications via the DOI in this record. This Armed Forces & Society forum is dedicated to exploring recent trends in the characteristics of military reserves and of the changing character of reserve forces within the armed forces within the military, the civilian sphere, and in between them. To bring new and critical perspectives to the study of reserve forces and civil–military relations, this introduction and the five articles that follow draw on two organizing conceptual models: The first portrays reservists as transmigrants and focuses on the plural membership of reservists in the military and in civilian society and the “travel” between them. The second model focuses on the multiple formal and informal compacts (contracts, agreements, or pacts) between reservists and the military

    Synapses as therapeutic targets for autism spectrum disorders: an international symposium held in Pavia on july 4th, 2014

    Get PDF
    New progresses into the molecular and cellular mechanisms of autism spectrum disorders (ASDs) have been discussed in 1 day international symposium held in Pavia (Italy) on July 4th, 2014 entitled “synapses as therapeutic targets for autism spectrum disorders” (satellite of the FENS Forum for Neuroscience, Milan, 2014). In particular, world experts in the field have highlighted how animal models of ASDs have greatly advanced our understanding of the molecular pathways involved in synaptic dysfunction leading sometimes to “synaptic clinical trials” in children. © 2014 Curatolo, Ben-Ari, Bozzi, Catania, D’Angelo, Mapelli, Oberman, Rosenmund and Cherubini

    Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking

    Full text link
    One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking

    Improving BDD Based Symbolic Model Checking with Isomorphism Exploiting Transition Relations

    Full text link
    Symbolic model checking by using BDDs has greatly improved the applicability of model checking. Nevertheless, BDD based symbolic model checking can still be very memory and time consuming. One main reason is the complex transition relation of systems. Sometimes, it is even not possible to generate the transition relation, due to its exhaustive memory requirements. To diminish this problem, the use of partitioned transition relations has been proposed. However, there are still systems which can not be verified at all. Furthermore, if the granularity of the partitions is too fine, the time required for verification may increase. In this paper we target the symbolic verification of asynchronous concurrent systems. For such systems we present an approach which uses similarities in the transition relation to get further memory reductions and runtime improvements. By applying our approach, even the verification of systems with an previously intractable transition relation becomes feasible.Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Temporal coding at the immature depolarizing gabaergic synapse

    Get PDF
    In the developing hippocampus, GABA exerts depolarizing and excitatory actions and contributes to the generation of neuronal network driven giant depolarizing potentials (GDPs). Here, we studied spike time coding at immature GABAergic synapses and its impact on synchronization of the neuronal network during GDPs in the neonatal (postnatal days P2-6) rat hippocampal slices. Using extracellular recordings, we found that the delays of action potentials (APs) evoked by synaptic activation of GABA(A) receptors are long (mean, 65 ms) and variable (within a time window of 10-200 ms). During patch-clamp recordings, depolarizing GABAergic responses were mainly subthreshold and their amplification by persistent sodium conductance was required to trigger APs. AP delays at GABAergic synapses shortened and their variability reduced with an increase in intracellular chloride concentration during whole-cell recordings. Negative shift of the GABA reversal potential (EGABA) with low concentrations of bumetanide, or potentiation of GABA(A) receptors with diazepam reduced GDPs amplitude, desynchronized neuronal firing during GDPs and slowed down GDPs propagation. Partial blockade of GABA(A) receptors with bicuculline increased neuronal synchronization and accelerated GDPs propagation. We propose that spike timing at depolarizing GABA synapses is determined by intracellular chloride concentration. At physiological levels of intracellular chloride GABAergic depolarization does not reach the action potential threshold and amplification of GABAergic responses by non-inactivating sodium conductance is required for postsynaptic AP initiation. Slow and variable excitation at GABAergic synapse determines the level of neuronal synchrony and the rate of GDPs propagation in the developing hippocampus. © 2010 Valeeva, Abdullin, Tyzio, Skorinkin, Nikolski, Ben-Ari and Khazipov

    Counterexamples Revisited: Principles, Algorithms, Applications

    Full text link
    Abstract. Algorithmic counterexample generation is a central feature of model checking which sets the method apart from other approaches such as theorem proving. The practical value of counterexamples to the verification engineer is evident, and for many years, counterexam-ple generation algorithms have been employed in model checking sys-tems, even though they had not been subject to an adequate fundamen-tal investigation. Recent advances in model checking technology such as counterexample-guided abstraction refinement have put strong em-phasis on counterexamples, and have lead to renewed interest both in fundamental and pragmatic aspects of counterexample generation. In this paper, we survey several key contributions to the subject includ-ing symbolic algorithms, results about the graph-theoretic structure of counterexamples, and applications to automated abstraction as well as software verification. Irrefutability is not a virtue of a theory (as people often think) but a vice
    • …
    corecore