78 research outputs found

    Candida auris Identification and Rapid Antifungal Susceptibility Testing Against Echinocandins by MALDI-TOF MS

    Get PDF
    Candida auris was first reported in an ear swab from Japan in 2009; it then promptly spread over five continents and turned into a global nosocomial problem. The main challenges faced by many researchers are the mis-identification by conventional methods in clinical laboratories and failure in treatment. About 90% of C. auris strains are intrinsically resistant to fluconazole (FLU), and it is developing resistance to multiple classes of available antifungals. Echinocandins are the most potent class of antifungals against C. auris; however, reduced susceptibility to one or many echinocandin drugs has been recently observed. Thus, the main issues addressed in this paper are the fast and accurate identification of C. auris derived from Sabouraud dextrose agar and blood culture bottles as well as the rapid antifungal susceptibility test by MALDI-TOF MS. This study successfully identified all isolates of C. auris (n = 50) by MALDI-TOF MS, with an average log score of ≥ 2. An accuracy of 100% was found on both agar plate and blood culture bottles. MALDI Biotyper antibiotic susceptibility test-rapid assay (MBT ASTRA) was used for rapid antifungal susceptibility testing (AFST). A comparison between MBT ASTRA and the Clinical and Laboratory Standards Institute guidelines (CLSI) detected a sensitivity and specificity of 100% and 98% for anidulafungin, and 100% and 95.5% for micafungin, respectively. A categorical agreement of 98% and 96% was calculated for the two methods. For caspofungin, sensitivity and specificity of 100 and 73% were found, respectively, with a categorical agreement of 82%. MBT ASTRA has the great potential to detect C. auris isolates non-susceptible against echinocandin antifungals within 6 h, which makes it a promising candidate for AFST in clinical laboratories in the future

    Aspergillus fumigatus Can Display Persistence to the Fungicidal Drug Voriconazole

    Get PDF
    Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. Importance: The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.J.A. is funded by an Atracción de Talento Modalidad 1 (020-T1/BMD-200) contract of the Madrid Regional Government. J.S. has been funded by a BSAC Scholarship (bsac-2016-0049). C.V. was funded by FAPESP (2108/00715-3 and 2020/01131-5). G.H.G. hasbeen funded by FAPESP (2016/07870-9 and 2021/04977-5), CNPq (301058/2019-9 and404735/2018-5) and by the NIH/NIAID (grant R01AI153356). S.G. was cofunded by the NIHR Manchester Research Centre and the Fungal Infection Trust.S

    MHC-IIB Filament Assembly and Cellular Localization Are Governed by the Rod Net Charge

    Get PDF
    Actin-dependent myosin II molecular motors form an integral part of the cell cytoskeleton. Myosin II molecules contain a long coiled-coil rod that mediates filament assembly required for myosin II to exert its full activity. The exact mechanisms orchestrating filament assembly are not fully understood., negatively-charged regions of the coiled-coil were found to play an important role by controlling the intracellular localization of native MHC-IIB. The entire positively-charged region is also important for intracellular localization of native MHC-IIB.A correct distribution of positive and negative charges along myosin II rod is a necessary component in proper filament assembly and intracellular localization of MHC-IIB

    Treatment of Invasive Candidiasis: A Narrative Review

    No full text
    Invasive candidiasis occurs frequently in hospitalized patients, and is associated with high mortality rates due to delays in recognition and initiation of appropriate antifungals. Management of invasive candidiasis must take into account multiple host, pathogen, and drug-related factors, including the site of infection, host immune status, severity of sepsis, resistance and tolerance to antifungal agents, biofilm formation, and pharmacokinetic/pharmacodynamic considerations. Recent treatment directives have been shaped by the widespread introduction of echinocandins, highly potent and safe antifungals, into clinical use, as well as important changes in drug susceptibility patterns and the emergence of known and novel drug-resistant Candida species. Advances in molecular diagnostics have the potential to guide early targeted treatment of high-risk patients

    Systemic Antifungal Therapy for Invasive Pulmonary Infections

    No full text
    Antifungal therapy for pulmonary fungal diseases is in a state of flux. Amphotericin B, the time-honored standard of care for many years, has been replaced by agents demonstrating superior efficacy and safety, including extended-spectrum triazoles and liposomal amphotericin B. Voriconazole, which became the treatment of choice for most pulmonary mold diseases, has been compared with posaconazole and itraconazole, both of which have shown clinical efficacy similar to that of voriconazole, with fewer adverse events. With the worldwide expansion of azole-resistant Aspergillus fumigatus and infections with intrinsically resistant non-Aspergillus molds, the need for newer antifungals with novel mechanisms of action becomes ever more pressing

    Correction: Modulation of Host Angiogenesis as a Microbial Survival Strategy and Therapeutic Target.

    No full text
    [This corrects the article DOI: 10.1371/journal.ppat.1005479.]

    Notable pathogens associated with modulation of host angiogenesis.

    No full text
    <p>Notable pathogens associated with modulation of host angiogenesis.</p
    corecore