23 research outputs found

    Seasonal Changes in the Plant Growth-Inhibitory Effects of Rosemary Leaves on Lettuce Seedlings

    Get PDF
    Plant biodiversity has been studied to explore allelopathic species for the sustainable management of weeds to reduce the reliance on synthetic herbicides. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.), was found to have plant growth-inhibitory effects, and carnosic acid was reported as an allelochemical in the plant. In this study, the effects of seasonal variation (2011–2012) on the carnosic acid concentration and phytotoxicity of rosemary leaves from two locations in Tunisia (Fahs and Matmata) were investigated. The carnosic acid concentration in rosemary leaves was determined by HPLC, and lettuce (Lactuca sativa L.) was used as the receptor plant in the phytotoxicity bioassay. The highest carnosic acid concentration was found in rosemary samples collected in June 2011, which also had the highest inhibitory activity. Furthermore, a significant inverse correlation (r = −0.529; p < 0.01) was found between the inhibitory activity on lettuce hypocotyl and the carnosic acid concentration in rosemary leaves. Both temperature and elevation had a significant positive correlation with carnosic acid concentration, while rainfall showed a negative correlation. The results showed that the inhibitory effects of rosemary leaf samples collected in summer was highest due to their high carnosic acid concentration. The phytotoxicity of rosemary needs to be studied over time to determine if it varies by season under field conditions.Peer Reviewe

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Genetic characterization of Trypanosoma cruzi natural clones from the state of ParaĂ­ba, Brazil

    No full text
    Eighteen Trypanosoma cruzi stocks from the state of ParaĂ­ba, Brazil, isolated from man, wild mammals, and triatomine bugs were studied by multilocus enzyme electrophoresis and random primed amplified polymorphic DNA. Despite the low number of stocks, a notable genetic, genotypic, and phylogenetic diversity was recorded. The presence of the two main phylogenetic subdivisions, T. cruzi I and II, was recorded. The strong linkage disequilibrium observed in the population under survey suggests that T. cruzi undergoes predominant clonal evolution in this area too, although this result should be confirmed by a broader sample. The pattern of clonal variation does not suggests a recent origin by founder effect with a limited number of different genotypes
    corecore