2 research outputs found

    Selenoprotein T as a new positive inotrope in the goldfish, Carassius auratus.

    Get PDF
    Selenoprotein T (SELENOT) is a thioredoxin-like protein, which mediates oxidoreductase functions via its redox active motif Cys-X-X-Sec. In mammals, SELENOT is expressed during ontogenesis and progressively decreases in adult tissues. In the heart, it is re-expressed after ischemia and induces cardioprotection against ischemia/reperfusion (I/R) injury. SELENOT is present in teleost fish, including the goldfish Carassius auratus. This study aimed to evaluate the cardiac expression of SELENOT, and the effects of exogenous PSELT (a 43-52 SELENOT derived-peptide) on the heart function of C. auratus, a hypoxia tolerance fish model. We found that SELENOT was expressed in cardiac extracts of juvenile and adult fish, located in the sarcoplasmic reticulum (SR) together with calsequestrin-2. Expression increased under acute hypoxia. On ex vivo isolated and perfused goldfish heart preparations, under normoxia, PSELT dose-dependently increased Stroke Volume (SV), Cardiac Output (Q̇), and Stroke Work (SW), by involving cAMP, PKA, L-type calcium channels, SERCA2a pumps, and pAkt. Under hypoxia, PSELT did not affect myocardial contractility. Only at higher concentrations (10−8 -10−7 M) an increase of SV and Q̇ was observed. It also reduced the cardiac expression of 3-NT, a tissue marker of nitrosative stress which increases under low oxygen availability. These data are the first to propose SELENOT 43-52, PSELT, as a cardiac modulator in fish, with a potential protective role under hypoxia

    SELENOT deficiency in the mouse brain impacts catecholaminergic neuron density: an immunohistochemical, in situ hybridization and 3D light-sheet imaging study

    No full text
    International audienceBackground: Selenoprotein T (SELENOT), a PACAP-regulated thioredoxin-like protein, plays a role in catecholamine secretion and protects dopaminergic neurons. However, the role of SELENOT in the establishment of the catecholaminergic (CA) neuronal system is not known yet. Methods: We analyzed by immunohistochemistry and RNAscope in situ hybridization the distribution of SELENOT and the expression of its mRNA, respectively. In addition, 3D imaging involving immunostaining in toto, clearing through the iDISCO+ method, acquisitions by light sheet microscopy and processing of 3D images was performed to map the CA neuronal system. A semi-automatic quantification of 3D images was carried out. Results: SELENOT protein and mRNA are widely distributed in the mouse brain, with important local variations. Three-dimensional mapping, through tyrosine hydroxylase (TH) labeling, and semi-automated quantification of CA neurons in brain-specific SELENOT knockout mice showed a significant decrease in the number of TH-positive neurons in the area postrema (AP-A2), the A11 cell group (A11) and the zona incerta (ZI-A13) of SELENOT-deficient females, and in the hypothalamus (Hyp-A12-A14-A15) of SELENOT-deficient females and males. Conclusion: These results showed that SELENOT is diffusely expressed in the mouse brain and that its deficiency impacts CA neuron distribution in different brain areas including Hyp-A12-A14-A15, in both male and female mice
    corecore