6,827 research outputs found

    Adaptation Algorithm and Theory Based on Generalized Discrepancy

    Full text link
    We present a new algorithm for domain adaptation improving upon a discrepancy minimization algorithm previously shown to outperform a number of algorithms for this task. Unlike many previous algorithms for domain adaptation, our algorithm does not consist of a fixed reweighting of the losses over the training sample. We show that our algorithm benefits from a solid theoretical foundation and more favorable learning bounds than discrepancy minimization. We present a detailed description of our algorithm and give several efficient solutions for solving its optimization problem. We also report the results of several experiments showing that it outperforms discrepancy minimization

    CP violation in Bd,s→l+l−B_{d,s} \to l^+l^- in the model III 2HDM

    Full text link
    We have calculated the Wilson coefficients C10,CQiC_{10}, C_{Q_i} (i=1,2) in the MSˉ\bar{MS} renormalization scheme in the model III 2HDM. Using the obtained Wilson coefficients, we have analyzed the CP violation in decays Bq0→l+l−B^0_q\to l^+l^- (q=d,s) in the model. The CP asymmetry, ACPA_{CP}, depends on the parameters of models and ACPA_{CP} in Bd→l+l−B_d\to l^+l^- can be as large as 40% and 35% for l=τl=\tau and l=μl=\mu respectively. It can reach 4% for Bs0B^0_s decays. Because in SM CP violation is smaller than or equal to O(10−310^{-3}) which is unobservably small, an observation of CP asymmetry in the decays Bq0→l+l−(q=d,s)B^0_q \to l^+l^- (q=d,s) would unambiguously signal the existence of new physics.Comment: revtex4, 16 pages, 7 figure

    Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies

    Get PDF
    Next-generation sequencing (NGS) technologies – Illumina RNA-seq, Pacific Biosciences isoform sequencing (PacBio Iso-seq), and Oxford Nanopore direct RNA sequencing (DRS) - have revealed the complexity of plant transcriptomes and their regulation at the co-/posttranscriptional level. Global analysis of mature mRNAs, transcripts from nuclear run-on assays, and nascent chromatin-bound mRNAs using short as well as full-length and single-molecule DRS reads have uncovered potential roles of different forms of RNA polymerase II during the transcription process, and the extent of co-transcriptional pre-mRNA splicing and polyadenylation. These tools have also allowed mapping of transcriptome-wide start sites in cap-containing RNAs, poly(A) site choice, poly(A) tail length, and RNA base modifications. Analysis of a large number of plant transcriptomes using high-throughput short and long reads under different conditions has established that diverse abiotic and biotic stresses and environmental cues such as light, which regulates many aspects of plant growth and development, have a profound impact on gene expression at the co-/post-transcriptional level. The emerging theme from these studies is that reprogramming of gene expression in response to developmental cues and stresses at the co-/post transcriptional level likely plays a crucial role in eliciting appropriate responses for optimal growth and plant survival under adverse conditions. Although the mechanisms by which developmental cues and different stresses regulate co-/posttranscriptional splicing are largely unknown, a few recent studies are beginning to provide some insights into these mechanisms. These studies indicate that the external cues target spliceosomal and splicing regulatory proteins to modulate alternative splicing. In this review, we provide an overview of recent discoveries on the dynamics and complexities of plant transcriptomes, mechanistic insights into splicing regulation, and discuss critical gaps in co-/post-transcriptional research that need to be addressed using diverse genomic and biochemical approaches

    Inelastically scattering particles and wealth distribution in an open economy

    Full text link
    Using the analogy with inelastic granular gasses we introduce a model for wealth exchange in society. The dynamics is governed by a kinetic equation, which allows for self-similar solutions. The scaling function has a power-law tail, the exponent being given by a transcendental equation. In the limit of continuous trading, closed form of the wealth distribution is calculated analytically.Comment: 8 pages 5 figure

    Efficient Computation of Dendritic Microstructures using Adaptive Mesh Refinement

    Full text link
    We study dendritic microstructure evolution using an adaptive grid, finite element method applied to a phase-field model. The computational complexity of our algorithm, per unit time, scales linearly with system size, rather than the quadratic variation given by standard uniform mesh schemes. Time-dependent calculations in two dimensions are in good agreement with the predictions of solvability theory, and can be extended to three dimensions and small undercoolingsComment: typo in a parameter of Fig. 1; 4 pages, 4 postscript figures, in LateX, (revtex

    Superresolution observed from evanescent waves transmitted through nano-corrugated metallic films

    Full text link
    Plane EM waves transmitted through nano-corrugated metallic thin films produce evanescent waves which include the information on the nano-structures. The production of the evanescent waves at the metallic surface are analyzed. A microsphere located above the metallic surface collects the evanescent waves which are converted into propagating waves. The equations for the refraction at the boundary of the microsphere and the use of Snell's law for evanescent waves are developed. The magnification of the nano-structure images is explained by a geometric optics description, but the high resolution is related to the evanescent waves properties.Comment: 12 page

    Understanding the DsJ+(2317)D^+_{sJ}(2317) and DsJ+(2460)D^+_{sJ}(2460) with Sum Rules in HQET

    Full text link
    In the framework of heavy quark effective theory we use QCD sum rules to calculate the masses of the cˉs\bar c s (0+,1+)(0^+, 1^+) and (1+,2+)(1^+, 2^+) excited states. The results are consistent with that the states DsJ(2317)D_{sJ}(2317) and DsJ(2460)D_{sJ}(2460) observed by BABAR and CLEO are the 0+0^+ and 1+1^+ states in the jl=12+j_l={1\over 2}^+ doublet

    CP asymmetry in B \to phi K_S in a SUSY SO(10) GUT

    Full text link
    We study the B→ϕKSB\to \phi K_S decay in a SUSY SO(10) GUT. We calculate the mass spectrum of sparticles for a given set of parameters at the GUT scale. We complete the calculations of the Wilson coefficients of operators including the new operators which are induced by NHB penguins at LO using the MIA with double insertions. It is shown that the recent experimental results on the time-dependent CP asymmetry SϕKS_{\phi K} in B→ϕKSB\to \phi K_S, which is negative and can not be explained in SM, can be explained in the model where there are flavor non-diagonal right-handed down squark mass matrix elements of 2nd and 3rd generations whose size satisfies all relevant constraints from known experiments (τ→μγ\tau \to \mu \gamma, B→XSγ,Bs→μ+μ−,B→Xsμ+μ−,B→Xsg,ΔMsB\to X_S\gamma, B_s\to \mu^+\mu^-, B\to X_s \mu^+\mu^-, B\to X_s g, \Delta M_s, etc.). At the same time, the branching ratio for the decay can also be in agreement with experimental measurements.Comment: 14 pages, 4 figure
    • …
    corecore