24 research outputs found
A Complete Axiom System for Propositional Interval Temporal Logic with Infinite Time
Interval Temporal Logic (ITL) is an established temporal formalism for
reasoning about time periods. For over 25 years, it has been applied in a
number of ways and several ITL variants, axiom systems and tools have been
investigated. We solve the longstanding open problem of finding a complete
axiom system for basic quantifier-free propositional ITL (PITL) with infinite
time for analysing nonterminating computational systems. Our completeness proof
uses a reduction to completeness for PITL with finite time and conventional
propositional linear-time temporal logic. Unlike completeness proofs of equally
expressive logics with nonelementary computational complexity, our semantic
approach does not use tableaux, subformula closures or explicit deductions
involving encodings of omega automata and nontrivial techniques for
complementing them. We believe that our result also provides evidence of the
naturalness of interval-based reasoning
Using Temporal Logic to Analyse Temporal Logic: A Hierarchical Approach Based on Intervals
Temporal logic has been extensively utilized in academia and industry to formally specify and verify behavioural properties of numerous kinds of hardware and software. We present a novel way to apply temporal logic to the study of a version of itself, namely, propositional linear-time temporal logic (PTL). This involves a hierarchical framework for obtaining standard results for PTL, including a small model property, decision procedures and axiomatic completeness. A large number of the steps involved are expressed in a propositional version of Interval Temporal Logic (ITL) which is referred to as PITL. It is a natural generalization of PTL and includes operators for reasoning about periods of time and sequential composition. Versions of PTL with finite time and infinite time are both considered and one benefit of the framework is the ability to systematically reduce infinitetime reasoning to finite-time reasoning. The treatment of PTL with the operator until and past time naturally reduces to that for PTL without either one. The interval-oriented methodology differs from other analyses of PTL which typicall
A Complete Axiom System for Propositional Interval Temporal Logic with Infinite Time
Interval Temporal Logic (ITL) is an established temporal formalism for
reasoning about time periods. For over 25 years, it has been applied in a
number of ways and several ITL variants, axiom systems and tools have been
investigated. We solve the longstanding open problem of finding a complete
axiom system for basic quantifier-free propositional ITL (PITL) with infinite
time for analysing nonterminating computational systems. Our completeness proof
uses a reduction to completeness for PITL with finite time and conventional
propositional linear-time temporal logic. Unlike completeness proofs of equally
expressive logics with nonelementary computational complexity, our semantic
approach does not use tableaux, subformula closures or explicit deductions
involving encodings of omega automata and nontrivial techniques for
complementing them. We believe that our result also provides evidence of the
naturalness of interval-based reasoning
Executing Temporal Logic Programs
Temporal logic is gaining recognition as an attractive and versatile formalism for rigorously specifying and reasoning about computer programs, digital circuits and message-passing systems. This book introduces Tempura, a programming language based on temporal logic. Tempura provides a way of directly executing suitable temporal logic specifications of digital circuits, parallel programs and other dynamic systems. Since every Tempura statement is also a temporal formula, the entire temporal logic formalism can be used as the assertion language and semantics. One result is that Tempura has the two seemingly contradictory properties of being a logic programming language and having imperative constructs such as assignment statements. The presentatio