9 research outputs found

    Data from: Testosterone modulates status-specific patterns of cooperation in a social network

    No full text
    Stable cooperation requires plasticity whereby individuals are able to express competitive or cooperative behaviors depending on social context. To date, however, the physiological mechanisms that underlie behavioral variation in cooperative systems are poorly understood. We studied hormone-mediated behavior in the wire-tailed manakin (Pipra filicauda), a gregarious songbird whose cooperative partnerships are crucial for fitness. We used automated telemetry to monitor > 36,000 cooperative interactions among male manakins over three field seasons, and we examined how circulating testosterone affects cooperation using > 500 hormone samples. Observational data show that in non-territorial floater males, high testosterone is associated with increased cooperative behaviors and subsequent ascension to territorial status. In territory-holding males, however, both observational and experimental evidence demonstrate that high testosterone antagonizes cooperation. Moreover, circulating testosterone explains significant variation (2-8%) in social behavior within each status class. Collectively, our findings show that the hormonal control of cooperation depends on a male’s social status. We propose that the status-dependent reorganization of hormone-regulatory pathways can facilitate stable cooperative partnerships, and thus provide direct fitness benefits for males

    Data files and analysis scripts

    No full text
    Raw data on social interactions and testosterone levels plus R scripts with annotated analysi

    Cloacal bacterial communities of tree swallows (Tachycineta bicolor): Similarity within a population, but not between pair-bonded social partners

    No full text
    Host-associated microbial communities can influence the overall health of their animal hosts, and many factors, including behavior and physiology, can impact the formation of these complex communities. Bacteria within these communities can be transmitted socially between individuals via indirect (e.g., shared environments) or direct (e.g., physical contact) pathways. Limited research has been done to investigate how social interactions that occur in the context of mating shape host-associated microbial communities. To gain a better understanding of these interactions and, more specifically, to assess how mating behavior shapes an animal’s microbiome, we studied the cloacal bacterial communities of a socially monogamous yet genetically polygynous songbird, the North American tree swallow (Tachycineta bicolor). We address two questions: (1) do the cloacal bacterial communities differ between female and male tree swallows within a population? and (2) do pair-bonded social partners exhibit more similar cloacal bacterial communities than expected by chance? To answer these questions, we sampled the cloacal microbiome of adults during the breeding season and then used culture-independent, 16S rRNA gene amplicon sequencing to assess bacterial communities. Overall, we found that the cloacal bacterial communities of females and males were similar, and that the communities of pair-bonded social partners were not more similar than expected by chance. Our results suggest that social monogamy does not correlate with an increased similarity in cloacal bacterial community diversity or structure. As social partners were not assessed at the same time, it is possible that breeding stage differences masked social effects on bacterial community diversity and structure. Further, given that tree swallows exhibit high variation in rates of extra-pair activity, considering extra-pair activity when assessing cloacal microbial communities may be important for understanding how these bacterial communities are shaped. Further insight into how bacterial communities are shaped will ultimately shed light on potential tradeoffs associated with alternative behavioral strategies and socially-transmitted microbes

    Testosterone modulates status-specific patterns of cooperation in a social network

    No full text
    Stable cooperation requires plasticity whereby individuals are able to express competitive or cooperative behaviors depending on social context. To date, however, the physiological mechanisms that underlie behavioral variation in cooperative systems are poorly understood. We studied hormone-mediated behavior in the wire-tailed manakin (Pipra filicauda), a gregarious songbird whose cooperative partnerships and competition for status are both crucial for fitness. We used automated telemetry to monitor 136,000 cooperative interactions among male manakins over three field seasons, and we examined how circulating testosterone affects cooperation usi
    corecore