9 research outputs found

    Making energy efficiency pro-poor : insights from behavioural economics for policy design

    Get PDF
    This paper reviews the current state of behavioural economics and its applications to energy efficiency in developing countries. Taking energy efficient lighting in Ghana, Uganda and Rwanda as empirical examples, this paper develops hypotheses on how behavioural factors can improve energy efficiency policies directed towards poor populations. The key argument is that different types of affordability exist that are influenced by behavioural factors to varying degrees. Using a qualitative approach, this paper finds that social preferences, framing and innovative financing solutions that acknowledge people’s mental accounts can provide useful starting points. Behavioural levers are only likely to work in a policy package that addresses wider technical, market and institutional barriers to energy efficiency. More research, carefully designed pre-tests and stakeholder debates are required before introducing policies based on behavioural insights. This is imperative to avoid the dangers of nudging

    The dataset of in-situ measurements of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gas Experiment (AGAGE) and affiliated stations (2023R2)

    No full text
    In the ALE/GAGE/AGAGE global network program, continuous high frequency gas chromatographic measurements of four biogenic/anthropogenic gases (methane, CH4; nitrous oxide, N2O; hydrogen, H2; and carbon monoxide, CO) and several anthropogenic gases that contribute to stratospheric ozone destruction and/or to the greenhouse effect have been carried out at five globally distributed sites for several years. The program, which began in 1978, is divided into three parts associated with three changes in instrumentation: the Atmospheric Lifetime Experiment (ALE), which used Hewlett Packard HP5840 gas chromatographs; the Global Atmospheric Gases Experiment (GAGE), which used HP5880 gas chromatographs; and the present Advanced GAGE (AGAGE). AGAGE uses two types of instruments: a gas chromatograph with multiple detectors (GC-MD), and a gas chromatograph with mass spectrometric analysis (GC-MS). Beginning in January 2004, an improved cryogenic preconcentration system (Medusa) replaced the absorption-desorption module in the GC-MS systems at Mace Head and Cape Grim; this provided improved capability to measure a broader range of volatile perfluorocarbons with high global warming potentials. The Medusa GC-MS systems were subsequently used at other AGAGE stations (Trinidad Head, Barbados, American Samoa, Zeppelin, Jungfraujoch, and Goan) after the initial setup at Mace Head and Cape Grim. More information may be found on the AGAGE home page: https://agage.mit.edu/instruments.Data from the AGAGE and affiliated stations (total of 10 sites) between August 1993 and December 2022 are provided in “Agage_gcmd_gcms_data_2023_11_15.tar.gz” (compressed tar file). The metadata file has information on each station and currently released species. The standard scales used in archived species are listed in "AGAGE_scale_2023_v2.pdf". Additional information can be found on the AGAGE website (https://agage.mit.edu)

    The Advanced Global Atmospheric Gases Experiment (AGAGE) Data

    No full text
    In the ALE/GAGE/AGAGE global network program, continuous high frequency gas chromatographic measurements of four biogenic/anthropogenic gases (methane, CH4; nitrous oxide, N2O; hydrogen, H2; and carbon monoxide, CO) and several anthropogenic gases that contribute to stratospheric ozone destruction and/or to the greenhouse effect have been carried out at five globally distributed sites for several years. The program, which began in 1978, is divided into three parts associated with three changes in instrumentation: the Atmospheric Lifetime Experiment (ALE), which used Hewlett Packard HP5840 gas chromatographs; the Global Atmospheric Gases Experiment (GAGE), which used HP5880 gas chromatographs; and the present Advanced GAGE (AGAGE). AGAGE uses two types of instruments: a gas chromatograph with multiple detectors (GC-MD), and a gas chromatograph with mass spectrometric analysis (GC-MS). Beginning in January 2004, an improved cryogenic preconcentration system (Medusa) replaced the absorption-desorption module in the GC-MS systems at Mace Head and Cape Grim; this provided improved capability to measure a broader range of volatile perfluorocarbons with high global warming potentials. The Medusa GC-MS systems were subsequently used at other AGAGE stations (Trinidad Head, Barbados, American Samoa, Zeppelin, Jungfraujoch, and Goan) after the initial setup at Mace Head and Cape Grim. More information may be found at the AGAGE home page: https://agage.mit.edu/instruments.Compared to the previous version (https://data.ess-dive.lbl.gov/datasets/doi: doi:10.15485/1781803), the latest update (Agage_gcmd_gcms.data.2022_01_03.tar.gz) includes 6 months of new data through the end of September 2020. For a complete list of released compounds and used standard scales, please see “AGAGE_scale_2021_v1.pdf” file. Additional information can also be found on the AGAGE website (https://agage.mit.edu)

    The dataset of in-situ measurements of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gas Experiment (AGAGE) and affiliated stations (2023R1)

    No full text
    In the ALE/GAGE/AGAGE global network program, continuous high frequency gas chromatographic measurements of four biogenic/anthropogenic gases (methane, CH4; nitrous oxide, N2O; hydrogen, H2; and carbon monoxide, CO) and several anthropogenic gases that contribute to stratospheric ozone destruction and/or to the greenhouse effect have been carried out at five globally distributed sites for several years. The program, which began in 1978, is divided into three parts associated with three changes in instrumentation: the Atmospheric Lifetime Experiment (ALE), which used Hewlett Packard HP5840 gas chromatographs; the Global Atmospheric Gases Experiment (GAGE), which used HP5880 gas chromatographs; and the present Advanced GAGE (AGAGE). AGAGE uses two types of instruments: a gas chromatograph with multiple detectors (GC-MD), and a gas chromatograph with mass spectrometric analysis (GC-MS). Beginning in January 2004, an improved cryogenic preconcentration system (Medusa) replaced the absorption-desorption module in the GC-MS systems at Mace Head and Cape Grim; this provided improved capability to measure a broader range of volatile perfluorocarbons with high global warming potentials. The Medusa GC-MS systems were subsequently used at other AGAGE stations (Trinidad Head, Barbados, American Samoa, Zeppelin, Jungfraujoch, and Goan) after the initial setup at Mace Head and Cape Grim. More information may be found on the AGAGE home page: https://agage.mit.edu/instruments.Data from the AGAGE and affiliated stations (total of 10 sites) between August 1993 and June 2022 are provided in “Agage_gcmd_gcms_data_2023_07_24.tar.gz” (compressed tar file). The metadata file has information on each station and currently released species. The standard scales used in archived species are listed in "AGAGE_scale_2023_v1.pdf". Additional information can be found on the AGAGE website (https://agage.mit.edu)

    The dataset of in-situ measurements of chemically and radiatively important atmospheric gases from the AGAGE and affiliated stations (2022R2)

    No full text
    In the ALE/GAGE/AGAGE global network program, continuous high frequency gas chromatographic measurements of four biogenic/anthropogenic gases (methane, CH4; nitrous oxide, N2O; hydrogen, H2; and carbon monoxide, CO) and several anthropogenic gases that contribute to stratospheric ozone destruction and/or to the greenhouse effect have been carried out at five globally distributed sites for several years. The program, which began in 1978, is divided into three parts associated with three changes in instrumentation: the Atmospheric Lifetime Experiment (ALE), which used Hewlett Packard HP5840 gas chromatographs; the Global Atmospheric Gases Experiment (GAGE), which used HP5880 gas chromatographs; and the present Advanced GAGE (AGAGE). AGAGE uses two types of instruments: a gas chromatograph with multiple detectors (GC-MD), and a gas chromatograph with mass spectrometric analysis (GC-MS). Beginning in January 2004, an improved cryogenic preconcentration system (Medusa) replaced the absorption-desorption module in the GC-MS systems at Mace Head and Cape Grim; this provided improved capability to measure a broader range of volatile perfluorocarbons with high global warming potentials. The Medusa GC-MS systems were subsequently used at other AGAGE stations (Trinidad Head, Barbados, American Samoa, Zeppelin, Jungfraujoch, and Goan) after the initial setup at Mace Head and Cape Grim. More information may be found on the AGAGE home page: https://agage.mit.edu/instruments.Data from the AGAGE and affiliated stations (total of 9 sites) between August 1993 and December 2021 are provided in “Agage_gcmd_gcms_data_2022_11_15.tar.gz” (compressed tar file). The metadata file has information on each station and currently released species. The standard scales used in archived species are listed in "AGAGE_scale_2022_v2.pdf". Additional information such as the mission and scientific objectives of the ALE/GAGE/AGAGE program can be found on the AGAGE website (https://agage.mit.edu/about/our-mission)

    In-situ measurements of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gas Experiment (AGAGE) and affiliated stations.

    No full text
    In the ALE/GAGE/AGAGE global network program, continuous high frequency gas chromatographic measurements of four biogenic/anthropogenic gases (methane, CH4; nitrous oxide, N2O; hydrogen, H2; and carbon monoxide, CO) and several anthropogenic gases that contribute to stratospheric ozone destruction and/or to the greenhouse effect have been carried out at five globally distributed sites for several years. The program, which began in 1978, is divided into three parts associated with three changes in instrumentation: the Atmospheric Lifetime Experiment (ALE), which used Hewlett Packard HP5840 gas chromatographs; the Global Atmospheric Gases Experiment (GAGE), which used HP5880 gas chromatographs; and the present Advanced GAGE (AGAGE). AGAGE uses two types of instruments: a gas chromatograph with multiple detectors (GC-MD), and a gas chromatograph with mass spectrometric analysis (GC-MS). Beginning in January 2004, an improved cryogenic preconcentration system (Medusa) replaced the absorption-desorption module in the GC-MS systems at Mace Head and Cape Grim; this provided improved capability to measure a broader range of volatile perfluorocarbons with high global warming potentials. The Medusa GC-MS systems were subsequently used at other AGAGE stations (Trinidad Head, Barbados, American Samoa, Zeppelin, Jungfraujoch, and Goan) after the initial setup at Mace Head and Cape Grim. More information may be found at the AGAGE home page: https://agage.mit.edu/instruments.Compared to the previous version (https://data.ess-dive.lbl.gov/view/doi:10.3334/CDIAC/ATG.DB1001), the latest update (Agage_gcmd_gcms_data_2021_04_07_tar.gz) includes 6 months of new data through the end of March 2020. Two new compounds, HCFC-132b, and HCFC-133a, are also included in this version. For a complete list of released compounds and used standard scales, please see “AGAGE_scale_2021_v1.pdf” file. Additional information can also be found on the AGAGE website (https://agage.mit.edu)

    The dataset of in-situ measurements of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gas Experiment (AGAGE) and affiliated stations (2023R1)

    No full text
    In the ALE/GAGE/AGAGE global network program, continuous high frequency gas chromatographic measurements of four biogenic/anthropogenic gases (methane, CH4; nitrous oxide, N2O; hydrogen, H2; and carbon monoxide, CO) and several anthropogenic gases that contribute to stratospheric ozone destruction and/or to the greenhouse effect have been carried out at five globally distributed sites for several years. The program, which began in 1978, is divided into three parts associated with three changes in instrumentation: the Atmospheric Lifetime Experiment (ALE), which used Hewlett Packard HP5840 gas chromatographs; the Global Atmospheric Gases Experiment (GAGE), which used HP5880 gas chromatographs; and the present Advanced GAGE (AGAGE). AGAGE uses two types of instruments: a gas chromatograph with multiple detectors (GC-MD), and a gas chromatograph with mass spectrometric analysis (GC-MS). Beginning in January 2004, an improved cryogenic preconcentration system (Medusa) replaced the absorption-desorption module in the GC-MS systems at Mace Head and Cape Grim; this provided improved capability to measure a broader range of volatile perfluorocarbons with high global warming potentials. The Medusa GC-MS systems were subsequently used at other AGAGE stations (Trinidad Head, Barbados, American Samoa, Zeppelin, Jungfraujoch, and Goan) after the initial setup at Mace Head and Cape Grim. More information may be found on the AGAGE home page: https://agage.mit.edu/instruments.Data from the AGAGE and affiliated stations (total of 10 sites) between August 1993 and June 2022 are provided in “Agage_gcmd_gcms_data_2023_07_24.tar.gz” (compressed tar file). The metadata file has information on each station and currently released species. The standard scales used in archived species are listed in "AGAGE_scale_2023_v1.pdf". Additional information can be found on the AGAGE website (https://agage.mit.edu)

    The dataset of in-situ measurements of chemically and radiatively important atmospheric gases from the AGAGE and affiliated stations (2022R1)

    No full text
    In the ALE/GAGE/AGAGE global network program, continuous high frequency gas chromatographic measurements of four biogenic/anthropogenic gases (methane, CH4; nitrous oxide, N2O; hydrogen, H2; and carbon monoxide, CO) and several anthropogenic gases that contribute to stratospheric ozone destruction and/or to the greenhouse effect have been carried out at five globally distributed sites for several years. The program, which began in 1978, is divided into three parts associated with three changes in instrumentation: the Atmospheric Lifetime Experiment (ALE), which used Hewlett Packard HP5840 gas chromatographs; the Global Atmospheric Gases Experiment (GAGE), which used HP5880 gas chromatographs; and the present Advanced GAGE (AGAGE). AGAGE uses two types of instruments: a gas chromatograph with multiple detectors (GC-MD), and a gas chromatograph with mass spectrometric analysis (GC-MS). Beginning in January 2004, an improved cryogenic preconcentration system (Medusa) replaced the absorption-desorption module in the GC-MS systems at Mace Head and Cape Grim; this provided improved capability to measure a broader range of volatile perfluorocarbons with high global warming potentials. The Medusa GC-MS systems were subsequently used at other AGAGE stations (Trinidad Head, Barbados, American Samoa, Zeppelin, Jungfraujoch, and Goan) after the initial setup at Mace Head and Cape Grim. More information may be found at the AGAGE home page: https://agage.mit.edu/instruments.Data from the AGAGE and affiliated stations (total of 9 sites) between August 1993 and March 2021 are provided in “Agage_gcmd_gcms_data_2022_05_26_tar.gz” (compressed tar file). The metadata file has information on each station and currently released species. The standard scales used in archived species are listed in "AGAGE_scale_2022_v1.pdf". Additional information can be found on the AGAGE website (https://agage.mit.edu)
    corecore