478 research outputs found

    The Augmented Synthetic Control Method

    Full text link
    The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit in panel data settings. The "synthetic control" is a weighted average of control units that balances the treated unit's pre-treatment outcomes as closely as possible. A critical feature of the original proposal is to use SCM only when the fit on pre-treatment outcomes is excellent. We propose Augmented SCM as an extension of SCM to settings where such pre-treatment fit is infeasible. Analogous to bias correction for inexact matching, Augmented SCM uses an outcome model to estimate the bias due to imperfect pre-treatment fit and then de-biases the original SCM estimate. Our main proposal, which uses ridge regression as the outcome model, directly controls pre-treatment fit while minimizing extrapolation from the convex hull. This estimator can also be expressed as a solution to a modified synthetic controls problem that allows negative weights on some donor units. We bound the estimation error of this approach under different data generating processes, including a linear factor model, and show how regularization helps to avoid over-fitting to noise. We demonstrate gains from Augmented SCM with extensive simulation studies and apply this framework to estimate the impact of the 2012 Kansas tax cuts on economic growth. We implement the proposed method in the new augsynth R package

    Using Multiple Outcomes to Improve the Synthetic Control Method

    Full text link
    When there are multiple outcome series of interest, Synthetic Control analyses typically proceed by estimating separate weights for each outcome. In this paper, we instead propose estimating a common set of weights across outcomes, by balancing either a vector of all outcomes or an index or average of them. Under a low-rank factor model, we show that these approaches lead to lower bias bounds than separate weights, and that averaging leads to further gains when the number of outcomes grows. We illustrate this via simulation and in a re-analysis of the impact of the Flint water crisis on educational outcomes.Comment: 36 pages, 6 figure

    A Random Walk to a Non-Ergodic Equilibrium Concept

    Full text link
    Random walk models, such as the trap model, continuous time random walks, and comb models exhibit weak ergodicity breaking, when the average waiting time is infinite. The open question is: what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory for such systems? In this manuscript a non-ergodic equilibrium concept is investigated, for a continuous time random walk model in a potential field. In particular we show that in the non-ergodic phase the distribution of the occupation time of the particle on a given lattice point, approaches U or W shaped distributions related to the arcsin law. We show that when conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the non-ergodic dynamics and canonical statistical mechanics. In the ergodic phase the distribution function of the occupation times approaches a delta function centered on the value predicted based on standard Boltzmann-Gibbs statistics. Relation of our work with single molecule experiments is briefly discussed.Comment: 14 pages, 6 figure

    Estimating Racial Disparities in Emergency General Surgery

    Full text link
    Research documents that Black patients experience worse general surgery outcomes than white patients in the United States. In this paper, we focus on an important but less-examined category: the surgical treatment of emergency general surgery (EGS) conditions, which refers to medical emergencies where the injury is "endogenous," such as a burst appendix. Our goal is to assess racial disparities for common outcomes after EGS treatment using an administrative database of hospital claims in New York, Florida, and Pennsylvania, and to understand the extent to which differences are attributable to patient-level risk factors versus hospital-level factors. To do so, we use a class of linear weighting estimators that re-weight white patients to have a similar distribution of baseline characteristics as Black patients. This framework nests many common approaches, including matching and linear regression, but offers important advantages over these methods in terms of controlling imbalance between groups, minimizing extrapolation, and reducing computation time. Applying this approach to the claims data, we find that disparities estimates that adjust for the admitting hospital are substantially smaller than estimates that adjust for patient baseline characteristics only, suggesting that hospital-specific factors are important drivers of racial disparities in EGS outcomes

    Anomalous biased diffusion in a randomly layered medium

    Full text link
    We present analytical results for the biased diffusion of particles moving under a constant force in a randomly layered medium. The influence of this medium on the particle dynamics is modeled by a piecewise constant random force. The long-time behavior of the particle position is studied in the frame of a continuous-time random walk on a semi-infinite one-dimensional lattice. We formulate the conditions for anomalous diffusion, derive the diffusion laws and analyze their dependence on the particle mass and the distribution of the random force.Comment: 19 pages, 1 figur

    Two-Scale Annihilation

    Full text link
    The kinetics of single-species annihilation, A+A→0A+A\to 0, is investigated in which each particle has a fixed velocity which may be either ±v\pm v with equal probability, and a finite diffusivity. In one dimension, the interplay between convection and diffusion leads to a decay of the density which is proportional to t−3/4t^{-3/4}. At long times, the reactants organize into domains of right- and left-moving particles, with the typical distance between particles in a single domain growing as t3/4t^{3/4}, and the distance between domains growing as tt. The probability that an arbitrary particle reacts with its nthn^{\rm th} neighbor is found to decay as n−5/2n^{-5/2} for same-velocity pairs and as n−7/4n^{-7/4} for +−+- pairs. These kinetic and spatial exponents and their interrelations are obtained by scaling arguments. Our predictions are in excellent agreement with numerical simulations.Comment: revtex, 5 pages, 5 figures, also available from http://arnold.uchicago.edu/~eb
    • …
    corecore