3 research outputs found

    The Critical Role of Fluoroethylene Carbonate in the Gassing of Silicon Anodes for Lithium-Ion Batteries

    No full text
    The use of functionalized electrolytes is effective in mitigating the poor cycling stability of silicon (Si), which has long hindered the implementation of this promising high-capacity anode material in next-generation lithium-ion batteries. In this Letter, we present a comparative study of gaseous byproducts formed by decomposition of fluoroethylene carbonate (FEC)-containing and FEC-free electrolytes using differential electrochemical mass spectrometry and infrared spectroscopy, combined with long-term cycling data of half-cells (Si vs Li). The evolving gaseous species depend strongly on the type of electrolyte; the main products for the FEC-based electrolyte are H<sub>2</sub> and CO<sub>2</sub>, while the FEC-free electrolyte shows predominantly H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, and CO. The characteristic shape of the evolution patterns suggests different reactivities of the various Li<sub><i>x</i></sub>Si alloys, depending on the cell potential. The data acquired for long-term cycling confirm the benefit of using FEC as cosolvent in the electrolyte

    Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium–Sulfur Batteries

    No full text
    Nitrogen-rich carbon with both a turbostratic microstructure and meso/macroporosity was prepared by hard templating through pyrolysis of a tricyanomethanide-based ionic liquid in the voids of a silica monolith template. This multifunctional carbon not only is a promising anode candidate for long-life lithium-ion batteries but also shows favorable properties as anode and cathode host material owing to a high nitrogen content (>8% after carbonization at 900 °C). To demonstrate the latter, the hierarchical carbon was melt-infiltrated with sulfur as well as coated by atomic layer deposition (ALD) of anatase TiO<sub>2</sub>, both of which led to high-quality nanocomposites. TiO<sub>2</sub> ALD increased the specific capacity of the carbon while maintaining high Coulombic efficiency and cycle life: the composite exhibited stable performance in lithium half-cells, with excellent recovery of low rate capacities after thousands of cycles at 5C. Lithium–sulfur batteries using the sulfur/carbon composite also showed good cyclability, with reversible capacities of ∼700 mA·h·g<sup>–1</sup> at C/5 and without obvious decay over several hundred cycles. The present results demonstrate that nitrogen-rich carbon with an interconnected multimodal pore structure is very versatile and can be used as both active and inactive electrode material in high-performance lithium-based batteries

    DataSheet1_Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolution.docx

    No full text
    High-entropy materials offer a wide range of possibilities for synthesizing new functional ceramics for different applications. Many synthesis methods have been explored to achieve a single-phase structure incorporating several different elements, yet a comparison between the synthesis methods is crucial to identify the new dimension such complex ceramics bring to material properties. As known for ceramic materials, the synthesis procedure usually has a significant influence on powder morphology, elemental distribution, particle size and powder processability. Properties that need to be tailored according to specific applications. Therefore, in this study perovskite-type high-entropy materials (Gd0.2La0.2–xSrxNd0.2Sm0.2Y0.2) (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 (x = 0 and x = 0.2) are synthesized for the first time using mechanochemical synthesis and a modified Pechini method. The comparison of different syntheses allows, not only tailoring of the constituent elements of high-entropy materials, but also to optimize the synthesis method as needed to overcome limitations of conventional ceramics. To exploit the novel materials for a variety of energy applications, their catalytic activity for oxygen evolution reaction was characterized. This paves the way for their integration into, e.g., regenerative fuel cells and metal air batteries.</p
    corecore