4 research outputs found

    Bunch Measurements with BPM at Low Energy Hadron Accelerators

    No full text
    International audienceBeam Position Monitors (BPM) are one of the key diagnostics use in LINACs, BPMs should ensure a continuous monitoring of the beam position and energy. BPMs also give an indication of the beam transverse shape. For electron LINACs, beam longitudinal length is measured with BPMs. However, in hadron LINACs, it is performed with intrusive modules (wire scanners, beam shape monitors) This document relates the measurement of beam longitudinal length with BPMs. It is divided in two parts: first, a theoretical model of the BPM operation and the formulas driving the measurement of beam longitudinal length from BPM output signals. Second, an experimental study run at MYRRHA LINAC facility and showing good agreement between estimated values of beam longitudinal length from Tracewin simulations and BPM measurements

    MYRRHA-MINERVA Injector Status and Commissioning

    No full text
    International audienceThe MYRRHA project at SCK•CEN, Belgium, aims at coupling a 600 MeV proton accelerator to a subcritical fission core operating at a thermal power of 60 MW. The nominal proton beam for this ADS has an intensity of 4 mA and is delivered in a quasi-CW mode. MYRRHA’s linac is designed to be fault tolerant thanks to redundancy implemented in parallel at low energy and serially in the superconducting linac. Phase 1 of the project, named MINERVA, will realise a 100 MeV, 4 mA superconducting linac with the mission of demonstrating the ADS requirements in terms of reliability and of fault tolerance. As part of the reliability optimisation program the integrated prototyping of the MINERVA injector is ongoing at SCK•CEN in Louvain-la-Neuve, Belgium. The injector test stand aims at testing sequentially all the elements composing the front-end of the injector. This contribution will highlight the beam dynamics choices in MINERVA’s injector and their impact on ongoing commissioning activities

    Beam Instrumentation, Challenging Tools for Demanding Projects –– a Snapshot from the French Assigned Network

    No full text
    International audienceParticle accelerators are thrusting the exploration of beam production towards several demanding territories, that is beam high intensity, high energy, short time and geometry precision or small size. Accelerators have thus more and more stringent characteristics that need to be measured. Beam diagnostics accompany these trends with a diversity of capacities and technologies that can encompass compactness, radiation hardness, low beam perturbation, or fast response and have a crucial role in the validation of the various operation phases. Their developments also call for specialized knowledge, expertise and technical resources. A snapshot from the French CNRS/IN2P3 beam instrumentation network is proposed. It aims to promote exchanges between the experts and facilitate the realization of project within the field. The network and several beam diagnostic technologies will be exposed. It includes developments of system with low beam interaction characteristics such as PEPITES, fast response detector such as the diamond-based by DIAMMONI, highly dedicated BPM for GANIL-SPIRAL2, emittance-meters which deals with high intensity beams and development for MYRRHA, SPIRAL2-DESIR and NEWGAIN

    TWAC : EIC Pathfinder Open European project on Novel dielectric acceleration

    No full text
    International audienceParticle accelerators are devices of primary importance in a large range of applications such as fundamental particle physics, nuclear physics, light sources, imaging, neutron sources, and transmutation of nuclear waste. They are also used every day for cargo inspection, medical diagnostics, and radiotherapy worldwide. Electron is the easiest particle to produce and manipulate, resulting in unequaled energy over cost ratio.However, there is an urgent and growing need to reduce the footprint of accelerators in order to lower their cost and environmental impact, from the future high-energy colliders to the portable relativistic electron source for industrial and societal applications. The radical new vision we propose will revolutionize the use of accelerators in terms of footprint, beam time delivery, and electron beam properties (stability, reproducibility, monochromaticity, femtosecond-scale bunch duration), which is today only a dream for a wide range of users. We propose developing a new structure sustaining the accelerating wave pushing up the particle energy, which will enable democratizing the access to femtosecond-scale electron bunch for ultrafast phenomena studies.This light and compact accelerator, for which we propose breaking through the current technological barriers, will open the way toward compact accelerators with an energy gain gradient of more than 100 MeV/m and enlarge time access in the medical environment (preclinical and clinical phase studies)
    corecore