19 research outputs found

    The Radially Swollen 4 Separase Mutation of Arabidopsis thaliana Blocks Chromosome Disjunction and Disrupts the Radial Microtubule System in Meiocytes

    Get PDF
    The caspase-family protease, separase, is required at the onset of anaphase to cleave the cohesin complex that joins replicated sister chromatids. However, in various eukaryotes, separase has acquired additional and distinct functions. A single amino-acid substitution in separase is responsible for phenotypes of the Arabidopsis thaliana mutant, radially swollen 4 (rsw4). This is a conditional mutant, resembling the wild type at the permissive temperature (∼20°C) and expressing mutant phenotypes at the restrictive temperature (∼30°C). Root cells in rsw4 at the restrictive temperature undergo non-disjunction and other indications of the loss of separase function. To determine to what extent separase activity remains at 30°C, we examined the effect of the mutation on meiosis, where the effects of loss of separase activity through RNA interference are known; and in addition, we examined female gametophyte development. Here, we report that, at the restrictive temperature, replicated chromosomes in rsw4 meiocytes typically fail to disjoin and the cohesin complex remains at centromeres after metaphase. Meiotic spindles appear normal in rsw4 male meiocytes; however the mutation disrupts the radial microtubule system, which is replaced by asymmetric arrays. Surprisingly, female gametophyte development was relatively insensitive to loss of separase activity, through either rsw4 or RNAi. These effects confirm that phenotypes in rsw4 result from loss of separase activity and establish a role for separase in regulating cell polarization following male meiosis

    VHA-19 Is Essential in Caenorhabditis elegans Oocytes for Embryogenesis and Is Involved in Trafficking in Oocytes

    Get PDF
    There is an urgent need to develop new drugs against parasitic nematodes, which are a significant burden on human health and agriculture. Information about the function of essential nematode-specific genes provides insight to key nematode-specific processes that could be targeted with drugs. We have characterized the function of a novel, nematode-specific Caenorhabditis elegans protein, VHA-19, and show that VHA-19 is essential in the germline and, specifically, the oocytes, for the completion of embryogenesis. VHA-19 is also involved in trafficking the oocyte receptor RME-2 to the oocyte plasma membrane and is essential for osmoregulation in the embryo, probably because VHA-19 is required for proper eggshell formation via exocytosis of cortical granules or other essential components of the eggshell. VHA-19 may also have a role in cytokinesis, either directly or as an indirect effect of its role in osmoregulation. Critically, VHA-19 is expressed in the excretory cell in both larvae and adults, suggesting that it may have a role in osmoregulation in C. elegans more generally, probably in trafficking or secretion pathways. This is the first time a role for VHA-19 has been described

    C. elegans Germ Cells Show Temperature and Age-Dependent Expression of Cer1, a Gypsy/Ty3-Related Retrotransposon

    Get PDF
    Virus-like particles (VLPs) have not been observed in Caenorhabditis germ cells, although nematode genomes contain low numbers of retrotransposon and retroviral sequences. We used electron microscopy to search for VLPs in various wild strains of Caenorhabditis, and observed very rare candidate VLPs in some strains, including the standard laboratory strain of C. elegans, N2. We identified the N2 VLPs as capsids produced by Cer1, a retrotransposon in the Gypsy/Ty3 family of retroviruses/retrotransposons. Cer1 expression is age and temperature dependent, with abundant expression at 15°C and no detectable expression at 25°C, explaining how VLPs escaped detection in previous studies. Similar age and temperature-dependent expression of Cer1 retrotransposons was observed for several other wild strains, indicating that these properties are common, if not integral, features of this retroelement. Retrotransposons, in contrast to DNA transposons, have a cytoplasmic stage in replication, and those that infect non-dividing cells must pass their genomic material through nuclear pores. In most C. elegans germ cells, nuclear pores are largely covered by germline-specific organelles called P granules. Our results suggest that Cer1 capsids target meiotic germ cells exiting pachytene, when free nuclear pores are added to the nuclear envelope and existing P granules begin to be removed. In pachytene germ cells, Cer1 capsids concentrate away from nuclei on a subset of microtubules that are exceptionally resistant to microtubule inhibitors; the capsids can aggregate these stable microtubules in older adults, which exhibit a temperature-dependent decrease in egg viability. When germ cells exit pachytene, the stable microtubules disappear and capsids redistribute close to nuclei that have P granule-free nuclear pores. This redistribution is microtubule dependent, suggesting that capsids that are released from stable microtubules transfer onto new, dynamic microtubules to track toward nuclei. These studies introduce C. elegans as a model to study the interplay between retroelements and germ cell biology

    Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription

    Get PDF
    Kinases and phosphatases regulate messenger RNA synthesis through post-translational modification of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (ref. 1). In yeast, the phosphatase Cdc14 is required for mitotic exit2,3 and for segregation of repetitive regions4. Cdc14 is also a subunit of the silencing complex RENT (refs 5, 6), but no roles in transcriptional repression have been described. Here we report that inactivation of Cdc14 causes silencing defects at the intergenic spacer sequences of ribosomal genes during interphase and at Y′ repeats in subtelomeric regions during mitosis. We show that the role of Cdc14 in silencing is independent of the RENT deacetylase subunit Sir2. Instead, Cdc14 acts directly on RNA polymerase II by targeting CTD phosphorylation at Ser 2 and Ser 5. We also find that the role of Cdc14 as a CTD phosphatase is conserved in humans. Finally, telomere segregation defects in cdc14 mutants4 correlate with the presence of subtelomeric Y′ elements and can be rescued by transcriptional inhibition of RNA polymerase II

    The ArfGEF GBF-1 Is Required for ER Structure, Secretion and Endocytic Transport in C. elegans

    Get PDF
    Small GTPases of the Sar/Arf family are essential to generate transport containers that mediate communication between organelles of the secretory pathway. Guanine nucleotide exchange factor (GEFs) activate the small GTPases and help their anchorage in the membrane. Thus, GEFs in a way temporally and spatially control Sar1/Arf1 GTPase activation. We investigated the role of the ArfGEF GBF-1 in C. elegans oocytes and intestinal epithelial cells. GBF-1 localizes to the cis-Golgi and is part of the t-ER-Golgi elements. GBF-1 is required for secretion and Golgi integrity. In addition, gbf-1(RNAi) causes the ER reticular structure to become dispersed, without destroying ER exit sites (ERES) because the ERES protein SEC-16 was still localized in distinct punctae at t-ER-Golgi units. Moreover, GBF-1 plays a role in receptor-mediated endocytosis in oocytes, without affecting recycling pathways. We find that both the yolk receptor RME-2 and the recycling endosome-associated RAB-11 localize similarly in control and gbf-1(RNAi) oocytes. While RAB5-positive early endosomes appear to be less prominent and the RAB-5 levels are reduced by gbf-1(RNAi) in the intestine, RAB-7-positive late endosomes were more abundant and formed aggregates and tubular structures. Our data suggest a role for GBF-1 in ER structure and endosomal traffic
    corecore